首页> 美国卫生研究院文献>other >Identification of Motions in Membrane Proteins by Elastic Network Models and Their Experimental Validation
【2h】

Identification of Motions in Membrane Proteins by Elastic Network Models and Their Experimental Validation

机译:弹性网络模型及其实验验证鉴定膜蛋白的运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identifying the functional motions of membrane proteins is difficult because they range from large-scale collective dynamics to local small atomic fluctuations at different timescales that are difficult to measure experimentally due to the hydrophobic nature of these proteins. Elastic Network Models, and in particular their most widely used implementation, the Anisotropic Network Model (ANM), have proven to be useful computational methods in many recent applications to predict membrane protein dynamics. These models are based on the premise that biomolecules possess intrinsic mechanical characteristics uniquely defined by their particular architectures. In the ANM, interactions between residues in close proximity are represented by harmonic potentials with a uniform spring constant. The slow mode shapes generated by the ANM provide valuable information on the global dynamics of biomolecules that are relevant to their function. In its recent extension in the form of ANM-guided molecular dynamics (MD), this coarse-grained approach is augmented with atomic detail. The results from ANM and its extensions can be used to guide experiments and thus speedup the process of quantifying motions in membrane proteins. Testing the predictions can be accomplished through (a) direct observation of motions through studies of structure and biophysical probes, (b) perturbation of the motions by, e.g., cross-linking or site-directed mutagenesis, and (c) by studying the effects of such perturbations on protein function, typically through ligand binding and activity assays. To illustrate the applicability of the combined computational ANM—experimental testing framework to membrane proteins, we describe—alongside the general protocols—here the application of ANM to rhodopsin, a prototypical member of the pharmacologically relevant G-protein coupled receptor family.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号