首页> 美国卫生研究院文献>other >Landscape of EGFR Signaling Network in Human Cancers: Biology and Therapeutic Response in Relation to Receptor Subcellular Locations
【2h】

Landscape of EGFR Signaling Network in Human Cancers: Biology and Therapeutic Response in Relation to Receptor Subcellular Locations

机译:在人类癌症中EGFR信号网络的景观:生物学和治疗反应有关受体亚细胞位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The epidermal growth factor receptor (EGFR) pathway is one of the most dysregulated molecular pathways in human cancers. Despite its well-established importance in tumor growth, progression and drug-resistant phenotype over the past several decades, targeted therapy designed to circumvent EGFR has yielded only modest clinical success in cancer patients, except those with non-small cell lung cancer (NSCLC) carrying EGFR activation mutations. However, almost all of these NSCLC patients eventually developed resistance to small molecule EGFR kinase inhibitors. These disappointing outcomes are, in part, due to the high complexity and the interactive nature of the EGFR signaling network. More recent compelling evidence further indicates that EGFR functionality can be dependent on its subcellular location. In this regard, EGFR undergoes translocation into different organelles where it elicits distinctly different functions than its best known activity as a plasma membrane-bound receptor tyrosine kinase. EGFR can be shuttled into the cell nucleus and mitochondrion upon ligand binding, radiation, EGFR-targeted therapy and other stimuli. Nuclear EGFR behaves as transcriptional regulator, tyrosine kinase, and mediator of other physiological processes. The role of mitochondrial EGFR remains poorly understood but it appears to regulate apoptosis. While studies using patient tumors have shown nuclear EGFR to be an indicator for poor clinical outcomes in cancer patients, the impact of mitochondrial EGFR on tumor behavior and patient prognosis remains to be defined. Most recently, several lines of evidence suggest that mislocated EGFR may regulate tumor response to therapy and that plasma membrane-bound EGFR elicits survival signals independent of its kinase activity. In light of these recent progresses and discoveries, we will outline in this minireview an emerging line of research that uncovers and functionally characterizes several novel modes of EGFR signaling that take center stage in the cell nucleus, mitochondrion and other subcellular compartments. We will also discuss the clinical implications of these findings in the rationale design for therapeutic strategy that overcomes tumor drug resistance.

著录项

  • 期刊名称 other
  • 作者

    Woody Han; Hui-Wen Lo;

  • 作者单位
  • 年(卷),期 -1(318),2
  • 年度 -1
  • 页码 124–134
  • 总页数 23
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号