首页> 美国卫生研究院文献>other >Rapid Release of Plasmid DNA from Surfaces Coated with Polyelectrolyte Multilayers Promoted by the Application of Electrochemical Potentials
【2h】

Rapid Release of Plasmid DNA from Surfaces Coated with Polyelectrolyte Multilayers Promoted by the Application of Electrochemical Potentials

机译:从涂覆有电解质电位的聚电解质多层涂覆的表面的质粒DNA的快速释放

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report an approach to the rapid release of DNA based on the application of electrochemical potentials to surfaces coated with polyelectrolyte-based thin films. We fabricated multilayered polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) using plasmid DNA and a model hydrolytically degradable cationic poly(β-amino ester) () on stainless steel substrates using a layer-by-layer approach. The application of continuous reduction potentials in the range of -1.1 to -0.7 V (vs. a Ag/AgCl electrode) to film-coated electrodes in PBS at 37 °C resulted in the complete release of DNA over a period of 1-2 minutes. Film-coated electrodes incubated under identical conditions in the absence of applied potentials required 1-2 days for complete release. Control over the magnitude of the applied potential provided control over the rate at which DNA was released. The results of these and additional physical characterization experiments are consistent with a mechanism of film disruption that is promoted by local increases in pH at the film/electrode interface (resulting from electrochemical reduction of water or dissolved oxygen) that disrupt ionic interactions in these materials. The results of cell-based experiments demonstrated that DNA was released in a form that remains intact and able to promote transgene expression in mammalian cells. Finally, we demonstrate that short-term (i.e., non-continuous) electrochemical treatments can also be used to promote faster film erosion (e.g., over 1-2 h) once the potential is removed. Past studies demonstrate that PEMs fabricated using can promote surface-mediated transfection of cells and tissues in vitro and in vivo. With further development, the electrochemical approaches reported here could thus provide new methods for the rapid, triggered, or spatially patterned transfer of DNA (or other agents) from surfaces of interest in a variety of fundamental and applied contexts. class="kwd-title">Keywords: Layer-by-Layer, Thin Films, DNA, Rapid Release, Electrochemical Methods class="head no_bottom_margin" id="S1title">IntroductionMaterials that provide control over the release of DNA from surfaces are important in a variety of contexts, ranging from the development of new research tools to the development of gene-based therapies. Methods for the immobilization of DNA on surfaces provide straightforward ‘physical’ approaches to defining the locations at which DNA is made available (e.g., by local delivery to cells residing in the vicinity of a film-coated implant or to cells growing on patterned features in an assay plate, etc.).- Many different approaches to the immobilization of DNA on surfaces- and the encapsulation of DNA in polymer-based films, coatings, and matrices,,- have been developed for this purpose. Much of the success with which these approaches can be translated for use in many applied contexts, however, will also depend upon the ability to exert simultaneous (and often variable) levels of control over the timing with which DNA is released (that is, to develop mechanisms that also allow for temporal control). For example, although sustained release may be desirable for some applications, others may require methods that can be used to promote rapid transfer or the triggered/on-demand release of DNA and other agents. Although many materials can promote sustained release of DNA from the surfaces of implants and interventional devices, the development of materials platforms that permit rapid or triggered release remains a general challenge. The work reported here takes a step toward addressing this broader goal by developing electrochemical approaches that can be used to promote the rapid release of plasmid DNA from surfaces coated with ultrathin polyelectrolyte-based films.The approach reported here exploits methods for the ‘layer-by-layer’ fabrication of thin polyelectrolyte-based films (called ‘polyelectrolyte multilayers’, or PEMs) on surfaces., This aqueous-based approach can be used to design films using a broad range of different polyelectrolytes, including charged proteins, viruses, and DNA.- In the context of drug delivery, these methods offer several practical advantages for the encapsulation and release of therapeutic agents. These advantages include: (i) precise, nanometer-scale control over film thickness and drug loading (by control over the number of layers incorporated), (ii) control over the relative locations of individual layers in a film (permitting the design of hierarchical films and films that can be used to release multiple agents),href="#R23" rid="R23" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046129">23-href="#R27" rid="R27" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046142">27 and (iii) the ability to fabricate thin films on surfaces with complex shapes.href="#R3" rid="R3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267468">3,href="#R20" rid="R20" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046087">20-href="#R22" rid="R22" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046088">22 Provided that they can be constructed in ways that permit subsequent disassembly, PEMs also provide a unique platform for control over the release of macromolecular agents that are otherwise too large to be released by diffusion. Different approaches to promoting film disruption have been reviewed recently,href="#R3" rid="R3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267456">3,href="#R4" rid="R4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046149">4,href="#R18" rid="R18" class=" bibr popnode">18,href="#R20" rid="R20" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046124">20-href="#R22" rid="R22" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046090">22 and include (i) films that respond to changes in environmental conditions (e.g., pH or ionic strength),href="#R28" rid="R28" class=" bibr popnode">28-href="#R31" rid="R31" class=" bibr popnode">31 (ii) films fabricated using hydrolytically-,href="#R23" rid="R23" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046098">23,href="#R32" rid="R32" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046148">32,href="#R33" rid="R33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046117">33 enzymatically-,href="#R34" rid="R34" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267460">34-href="#R36" rid="R36" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267465">36 and reductively-degradablehref="#R37" rid="R37" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046150">37-href="#R39" rid="R39" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046106">39 polyelectrolytes, and (iii) films that respond to the application of external stimuli (e.g., light, electrochemical potentials, etc.).href="#R40" rid="R40" class=" bibr popnode">40-href="#R45" rid="R45" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046113">45Several groups have demonstrated that the approaches outlined above can be used to design PEMs that promote the release of DNA.href="#R3" rid="R3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267461">3 Work in our group has focused on the design of PEMs fabricated using plasmid DNA and hydrolytically degradable cationic poly(β-amino ester)s such as href="/pmc/articles/PMC3359390/figure/F6/" target="figure" class="fig-table-link figpopup" rid-figpopup="F6" rid-ob="ob-F6" co-legend-rid="lgnd_F6">polymer 1.href="#R33" rid="R33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046132">33,href="#R46" rid="R46" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267467">46,href="#R47" rid="R47" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046104">47 We and others have demonstrated that films fabricated using DNA and href="/pmc/articles/PMC3359390/figure/F6/" target="figure" class="fig-table-link figpopup" rid-figpopup="F6" rid-ob="ob-F6" co-legend-rid="lgnd_F6">polymer 1 (referred to hereafter as ‘polymer >1/DNA films’) erode in aqueous environments and promote the release of DNA.href="#R33" rid="R33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046103">33,href="#R46" rid="R46" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267464">46-href="#R52" rid="R52" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046123">52 These studies have also demonstrated that these materials can be used to promote the localized and surface-mediated delivery of DNA to cells and tissues in vitrohref="#R46" rid="R46" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267459">46,href="#R47" rid="R47" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046111">47 and in vivo.href="#R50" rid="R50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046118">50,href="#R52" rid="R52" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046114">52In general, polymer >1/DNA films erode and release DNA gradually when incubated in physiologically relevant media [e.g., over a period of ∼2-4 days when incubated in phosphate-buffered saline (pH= 7.4) at 37 °C].href="#R33" rid="R33" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046101">33,href="#R47" rid="R47" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046094">47 We have also reported the design of films that exhibit more extended release profiles (e.g., over weeks or months),href="#R25" rid="R25" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046146">25,href="#R26" rid="R26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046099">26,href="#R53" rid="R53" class=" bibr popnode">53,href="#R54" rid="R54" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267470">54 but we have, in general, found it difficult to design PEMs that erode and release DNA more rapidly (e.g., over seconds or minutes). As a first step toward the design of faster-releasing films, we recently reported that incorporation of layers of poly(acrylic acid) (a pH-dependent weak polyelectrolyte) into polymer >1/DNA films leads to films that release DNA over 3-6 hours in physiologically relevant media.href="#R55" rid="R55" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267458">55 Other groups have reported PEMs that can be induced to undergo rapid, triggered disassembly to release DNA or oligonucleotides upon exposure to chemical reducing agents (e.g., by contact of films containing disulfide functionality with thiol-based reducing agents).href="#R38" rid="R38" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046115">38,href="#R39" rid="R39" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046091">39,href="#R56" rid="R56" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267469">56 This approach is well-suited to affecting the intracellular release of DNA or in other situations where chemical reducing agents (e.g., glutathione) are present. This current investigation sought to develop approaches that could be used to promote the rapid release of DNA in response to an externally applied stimulus (e.g., the application of an electrochemical potential) that would not otherwise be present in biological environments and would be unlikely to cause adverse effects to neighboring cells or tissues.This investigation builds upon the results of past studies demonstrating that the application of electrochemical potentials can be used to disrupt or deconstruct PEMs. In general, these approaches fall into one of two categories. The first approach involves the fabrication of multilayers using electro-active molecules as film components; the application of oxidation or reduction potentials to these films changes the redox-states of these components and, as a result, leads to changes in intramolecular interactions in the films.href="#R42" rid="R42" class=" bibr popnode">42,href="#R45" rid="R45" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046093">45,href="#R57" rid="R57" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046110">57,href="#R58" rid="R58" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046136">58 The second approach is based on the creation of local changes in pH near the surfaces of film-coated electrodes by (i) electrochemical oxidation of water (which results in the production of hydronium ions)href="#R43" rid="R43" class=" bibr popnode">43,href="#R44" rid="R44" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046143">44,href="#R59" rid="R59" class=" bibr popnode">59-href="#R62" rid="R62" class=" bibr popnode">62 or (ii) electrochemical reduction of water or dissolved oxygen (which results in the production of hydroxide ions).href="#R63" rid="R63" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267450">63 This second approach does not require the use of electro-active film components, and it is useful for promoting the electrochemically-triggered dissolution of PEMs with components that respond to increases or decreases in pH. For example, electrochemically-induced decreases in local pH near electrodes have been used to promote the dissolution or disruption of PEMs fabricated from poly(lysine)/heparin,href="#R43" rid="R43" class=" bibr popnode">43 as well as films fabricated from poly(lysine) and fish sperm DNA,href="#R60" rid="R60" class=" bibr popnode">60 and avidin and an imminobiotin-labeled polymer.href="#R44" rid="R44" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046116">44 Other studies have demonstrated that electrochemically-induced increases in local pH can be used to dissolve or deconstruct hydrogen-bonded multilayers fabricated from poly(vinylpyrrolidone) and tannic acid.href="#R63" rid="R63" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267457">63Here, we report that electrochemically induced changes in pH can be used to accelerate dramatically the erosion of PEMs fabricated using transcriptionally active plasmid DNA. We demonstrate that the application of reduction potentials to stainless steel electrodes coated with polymer >1/DNA films results in the complete release of DNA over periods ranging from seconds to several minutes (as opposed to several days in the absence of applied potentials). We demonstrate further that the rate of release can be tuned by adjusting the magnitude of the reduction potential applied to the electrode, and that the DNA that is released under these conditions remains transcriptionally active and able to promote transgene expression in mammalian cells. Our results are consistent with a mechanism of release that involves the localized generation of elevated pH near electrode surfaces. We note that a recent study reported the electron transfer-mediated release of DNA from multilayers fabricated from redox-active zirconium ions.href="#R45" rid="R45" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046108">45 Our current approach provides a method for the release of DNA that (i) does not involve electron-transfer to the film itself (or, ultimately, even direct contact of the film with an electrode), and (ii) exploits multilayer structures that promote the simultaneous releasehref="#R64" rid="R64" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046109">64 of DNA and a cationic polymer (href="/pmc/articles/PMC3359390/figure/F6/" target="figure" class="fig-table-link figpopup" rid-figpopup="F6" rid-ob="ob-F6" co-legend-rid="lgnd_F6">polymer 1) used in several past studies to deliver DNA to cells.href="#R46" rid="R46" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_339267471">46,href="#R52" rid="R52" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_306046151">52,href="#R65" rid="R65" class=" bibr popnode">65,href="#R66" rid="R66" class=" bibr popnode">66 With further development, this approach could therefore lead to new methods for the rapid transfer or patterned delivery of DNA to cells and tissues of interest in a range of fundamental and applied contexts.
机译:我们报告了基于电化学电位对涂覆基于聚电解质的薄膜的表面的涂覆的扫描的快速释放方法。我们使用层 - 逐层方法在不锈钢基板上制造多层聚电解质膜(或“聚电解质多层”,PEM)和水解可降解的阳离子聚(β-氨基酯)()。在37℃的PBS中施加在-1.1至-0.7V(与Ag / Ag / AgCl电极)的范围内的膜涂覆电极导致DNA的完全释放在1-2时分钟。在不存在施加电位的情况下在相同条件下孵育的膜涂层电极需要1-2天以进行完全释放。控制施加电位的大小提供了对释放DNA的速率的控制。这些和额外的物理表征实验的结果与膜/电极界面在薄膜/电极界面的pH中的pH值促进的薄膜破坏机制一致(由水或溶解氧的电化学还原产生)促进这些材料中的离子相互作用。基于细胞的实验结果证明DNA以保持完整的形式释放并能够促进哺乳动物细胞中转基因表达的形式。最后,我们证明,一旦除去电位,我们也可以使用短期(即非连续)电化学处理来促进更快的薄膜侵蚀(例如,超过1-2小时)。过去的研究表明,使用使用的PEM可以在体外和体内促进表面介导的细胞和组织的转染。随着进一步的发展,这里报道的电化学方法可以为来自对各种基本和应用的环境的感兴趣的表面提供新的快速,触发或空间图案化转移DNA(或其他药物)的新方法。<! - 无花果FT0 - > <! - 图模式=文章F1 - > <强类=“KWD-TITE”>关键词:逐层,薄膜,DNA,快速释放,电化学方法介绍提供对来自表面的DNA释放的材料在各种情况下是重要的,从开发开发到开发基因基疗法。用于在表面上固定DNA的方法提供了直接的“物理”方法,以定义DNA的可用的位置(例如,通过局部递送到驻留在膜涂覆的植入物附近的细胞或生长在图案化的特征上的细胞测定板等。)。 - 在表面上固定DNA的许多不同方法 - 以及聚合物基薄膜,涂层和矩阵中的DNA的包封< Sup> ,, - 已为此开发。然而,这些方法可以翻译在许多应用上下文中的大部分成功也将取决于在释放DNA的定时施加同时(并且通常可变)控制水平的能力(即开发也允许时间控制的机制)。例如,尽管对于某些应用可能需要持续释放,但是其他可能需要可用于促进快速转移或DNA和其他药剂的触发/按需释放的方法。尽管许多材料可以从植入物和介入装置的表面促进DNA的持续释放,但是允许快速或触发释放的材料平台的发展仍然是一般挑战。这里报道的工作通过开发可用于促进涂有超薄聚电解质基薄膜的表面的电化学方法来解决这种更广泛的目标。该方法在此据报道,此处利用“层”的方法-Layer在表面上制造基于薄的聚电解质基薄膜(称为“聚电解质多层”或PEMS)。该水基方法可用于使用广泛的不同聚电解质设计薄膜,包括带电蛋白质,病毒和DNA。 - 在药物递送的背景下,这些方法为治疗剂的包封和释放提供了几种实际优势。这些优点包括:(i)对膜厚度和药物负载的精确,纳米级控制(通过控制在掺入的层数),(ii)控制薄膜中各个层的相对位置(允许层次的设计可用于释放多个代理的电影和胶片), href="#r23"id ="r23"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046129"__23 - href =“#r27”RID =“R27” class =“bibl popnode tag_hotlink tag_tooltip”id =“__ tag_306046142”> 27 和(iii)能够在具有复杂形状的表面上制造薄膜。 href =“#r3” RID =“R3”类=“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ TAG_339267468”> 3 , 20 - href="#r22" rive="r22"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046088"> 22 它们可以构造以允许随后的拆卸的方式,PEM还提供了一种独特的平台,用于控制释放否则太大而不是通过扩散释放的大分子试剂。最近审查了不同的推广电影中断的方法, href="#r3"id="r3"类=“bibr popnode tag_hotlink tag_tooltip" id="_Tag_339267456"__339267456"_3 ,href =“#r4”RID =“R4”类=“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ TAG_306046149”> 4 ,href="#110"in rive1118"类=“bibr popnode"a> 18 ,href="#r20"id="r20"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046124"_20 - href =“#r22”RID =“ R22“Class =”BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP“ID =”__ TAG_306046090“> 22 ,并包括响应环境条件(例如pH或离子强度)的变化的薄膜, href="#r28" rive="r28" class="bibr popnode"> 28 - href="#r31"idive="r31"类="bibr popnode"> 31 (ii)使用水解地制造的薄膜 - , href="#r23"id="r23"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046098"__23 , href="#r32" rive="r32" class="b bibr popnode tag_hotlink tag_tooltip" id="__tag_306046148"> 32 ,href="#r33" rive="r33"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046117"_​​_33 enzymicalization - , href =“# R34“RID =”R34“class =”bibl popnode tag_hotlink tag_tooltip“id =”__ tag_339267460“> 34 - href =”#r36“Rid =”R36“class =”bibr popnode tag_hotlink tag_tooltip“id = “__tag_339267465”> 36 和可减要可降解 href="#r37" rive="r37" class="bibr popnode tag_hotlink tag_tooltip" id="_tag_306046150"__37 - href="#r39" rive="r39"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046106"__39 聚电解质,以及响应的电影外部刺激的应用(例如,光,电化学电位等)。 href="#r40"id="r40" class="bibr popnode"> - href =“ #R45“RID =”R45“Class =”BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP“ID =”__ TAG_306046113“> 45 几个组已经证明,上述方法可用于设计促进释放的PEM DNA。 hr ef =“#r3”rid =“r3”类=“bibr popnode tag_hotlink tag_tooltip”ID =“__ tag_339267461”> 3 在本集团的工作专注于使用质粒DNA制造的PEMS的设计和水解可降解的阳离子聚(β-氨基酯)如聚合物1 。 href =”#r33“RID =”R33“Class =”BIBR POPNODE TAG_HOTLINK tag_tooltip“id =”__ tag_306046132“> 33 46 ,href =“#R47”RID =“R47”类=“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ TAG_306046104”> 47 我们和其他人已经证明使用DNA和聚合物1 (以下称为'聚合物> 1 / DNA薄膜')侵蚀水环境并促进DNA的释放。 href="#r33"id="r33"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_306046103"> 33 < / a>,href="#r46" rive="r46"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_339267464"> 46 - href =“#r52”RID =“R52” Class =“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ TAG_306046123”> 52 这些研究还证明这些材料可用于促进局部和表面介导的DNA递送到细胞和组织中的DNA体外 href="#r46" rive="r46"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_339267459"> 46 ,href =“#r47”Rid =“R47” class =“bibr popnode tag_hotlink tag_tooltip”id =“__ tag_306046111”> 47 和体内。 href =“#r50”rive =“r50”class =“bibl popnode tag_hotlink tag_tooltip “id =”__ tag_306046118“> 50 一般来说,聚合物 1 / dna膜逐渐侵蚀和释放DNA [例如,在37°C的磷酸盐缓冲盐水(pH = 7.4)中孵育时的一段时间。 href =“#r33”RID =“R33”类=“BIBR POPNODE TAG_HOTLINK tag_tooltip“id =”__ tag_306046101“> 33 我们还报告了展示更扩展的释放简档(例如,超过数周或几个月)的电影的设计, href =“#r25”Rid =“R25”类=“bibr popnode tag_hotlink tag_tooltip”id =“。 __tag_306046146“> 25 ,href =”#r53“ RID =“R53”类=“BIBR POPNODE”> 53 ,href="#r54" rive="r54"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_339267470"> 54 但我们有一般而言,难以设计侵蚀和释放DNA的PEM更快(例如,超过几秒钟或分钟)。作为朝向更快的释放薄膜设计的第一步,我们最近报道,将聚(丙烯酸)(pH依赖性弱聚电解质)的层掺入聚合物<强> 1℃的聚合物中导致薄膜在生理相关媒体中释放3-6小时超过3-6小时的DNA。 href="#r55"id="r55"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_339267458"> 55 其他基团已经报告了可以诱导的PEM,其能够在暴露于化学还原剂时释放DNA或寡核苷酸(例如,通过将含有二硫键的含有基于硫醇的还原剂的薄膜接触)。 < href =“#r38”rid =“r38”类=“bibr popnode tag_hotlink tag_tooltip”id =“__ tag_306046115”> 38 , 39 56 这种方法是很好的用来影响DNA的细胞内释放或在存在化学还原剂(例如谷胱甘肽)的其他情况下。该目前的调查寻求开发可用于促进DNA的快速释放响应于外部施用的刺激(例如,电化学潜力的应用)的方法,这些方法不会出现在生物环境中,并且不太可能导致对邻近细胞或组织的不利影响。在过去的研究结果上建立了证明电化学电位的应用可用于破坏或解构PEM。通常,这些方法落入两类中的一个。第一方法涉及使用电活性分子作为薄膜组分制备多层;氧化或降低电位对这些膜的施加改变了这些组分的氧化还原状态,结果导致膜中的分子内相互作用的变化。 href =“#r42”Rid =“R42” class =“bibl popnode”> 42 ,href="#r45" rive="r45"类="bibr popnode tag_hotlink tag_tooltip" id="_tag_306046093"__45 , 57 , 58 第二种方法是基于通过(i)电化学氧化水(I)电化学氧化(这导致生产的膜涂覆电极表面附近pH的局部变化(这导致生产肼离子) href="#r43" rive="r43"类=“bibr popnode"> ="bibr popnode"> 43 ,href =”#r44“Rid =”R44“Class =”BIBR popnode tag_hotlink tag_tooltip“id =”__ tag_306046143“> 44 59 - href =”#r62“ RID =“R62”CLA S =“BIBR POPNODE”> 62 或(ii)水化学还原水或溶解氧(这导致氢氧化物离子的产生)。 href =“#r63”摆脱=“R63”类=“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ TAG_339267450”> 63 该第二种方法不需要使用电动活性胶片组件,并且它可用于促进电化学的使用是有用的 - 与响应pH值增加或减少的组分的PEM溶解。例如,已经使用电化学诱导的电极在电极附近的局部pH的降低用于促进来自聚(赖氨酸)/肝素的PEM的溶解或破坏, href =“#r43”Rid =“R43”类= “BIBR POPNODE”> 43 以及由聚(赖氨酸)和鱼精子DNA制造的薄膜, href="#r60" rive="r60" class="bibr popnode"> 60 和抗生物素蛋白和免疫蛋白标记的聚合物。 href =“ #r44“RID =”R44“Class =”BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP“ID =”__ TAG_306046116“> 44 其他研究表明,局部pH的电化学诱导的增加可用于溶解或解构由聚(乙烯基吡咯烷酮)和单宁酸制造的氢键多层。 href="#r63" rive="r63"类="bibr popnode tag_hotlink tag_tooltip" id="__tag_339267457"> 63 < / sup>这里,我们报告的是,电化学诱导的pH变化可用于显着加速使用转录活性质粒DNA制造的PEM的腐蚀。我们证明,将还原电位应用于涂有聚合物<强> 1℃的不锈钢电极,导致DNA的完全释放超过几秒〜几分钟(而不是在缺失中的几天应用潜力)。我们进一步证明可以通过调节施加到电极的减小电位的幅度来调整释放速率,并且在这些条件下释放的DNA保持转录活性并且能够促进哺乳动物细胞中的转基因表达。我们的结果与释放机制一致,其涉及局部产生升高的pH靠近电极表面。我们注意到,最近的研究报告了从氧化还原活性锆离子制造的多层的电子转移介导的DNA释放。 href =“#r45”RID =“R45”类=“BIBR POPNODE TAG_HOTLINK TAG_TOOLTIP”ID =“__ tag_306046108”> 45 我们的目前的方法提供了一种用于释放DNA的方法(i)不涉及电子转移到薄膜本身(或最终甚至直接接触薄膜使用电极),(ii)利用促进同时释放 href="#r64"id="r64"类=“bibl popnode tag_hotlink tag_tooltip" id ="_Tag_306046109"> 64 (href =“/ pmc / stuticles / pmc3359390 /图/ f6 /”目标=“图”Class =“图 - 表 - 表链路FIGPOPUP”RID-FICPOPUP =“ F6“RID-OB =”OB-F6“共传导 - RID =”LGND_F6“>聚合物1 )用于若干过去的研究中,将DNA递送给细胞。 46 52 ,href="#r65" rive="r65" class="bibr popnode"> 65 ,href="#r66" rive="r66"类="bibr popnode"> 66 进一步开发,因此这种方法可以导致快速转移或图案的新方法将DNA与感兴趣的细胞和组织中的一系列基本和应用的环境中的递送。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号