首页> 美国卫生研究院文献>other >The Fundamental Role of Flexibility on the Strength of Molecular Binding
【2h】

The Fundamental Role of Flexibility on the Strength of Molecular Binding

机译:柔性对分子的强度的基础性作用结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-covalent molecular association underlies a diverse set of biologically and technologically relevant phenomena, including the action of drugs on their biomolecular targets and self- and supra-molecular assembly processes. Computer models employed to model binding frequently use interaction potentials with atomistic detail while neglecting the thermal molecular motions of the binding species. However, errors introduced by this simplification and, more broadly, the thermodynamic consequences of molecular flexibility on binding, are little understood. Here, we isolate the fundamental relationship of molecular flexibility to binding thermodynamics via simulations of simplified molecules with a wide range of flexibilities but the same interaction potential. Disregarding molecular motion is found to generate large errors in binding entropy, enthalpy and free energy, even for molecules that are nearly rigid. Indeed, small decreases in rigidity markedly reduce affinity for highly rigid molecules. Remarkably, precisely the opposite occurs for more flexible molecules, for which increasing flexibility leads to stronger binding affinity. We also find that differences in flexibility suffice to generate binding specificity: for example, a planar surface selectively binds rigid over flexible molecules. Intriguingly, varying molecular flexibility while keeping interaction potentials constant leads to near-linear enthalpy-entropy compensation over a wide range of flexibilities, with the unexpected twist that increasing flexibility produces opposite changes in entropy and enthalpy for molecules in the flexible versus the rigid regime. Molecular flexibility is thus a crucial determinant of binding affinity and specificity and variations in flexibility can lead to strong yet non-intuitive consequences.
机译:非共价分子协会在各种各样的生物学和技术相关现象下利用,包括药物对其生物分子靶标的作用和自我和同学组装过程。用于模型结合的计算机模型经常使用具有原子细节的相互作用电位,同时忽略结合物种的热分子运动。然而,通过这种简化引入的误差和更广泛地,分子柔韧性对结合的热力学后果几乎没有明白。在这里,我们将分子柔性的基本关系与具有宽范围柔性的简化分子的模拟,但相同的相互作用电位的模拟。忽略分子运动发现在结合熵,焓和自由能中产生大的误差,即使对于几乎刚性的分子。实际上,刚性的小降低显着降低对高度刚性分子的亲和力。对于更柔韧的分子,显着地,恰恰相反,柔韧性增加导致更强的结合亲和力。我们还发现灵活性的差异足够产生结合特异性:例如,平面表面选择性地结合柔性分子刚性。有趣的是,不同的分子柔韧性,同时保持相互作用电位恒定导致近在线性焓 - 熵补偿在各种灵活性范围内,具有意外的扭曲,即柔韧性的增加产生熵与刚性状态的分子中的熵和焓的相反变化。因此,分子柔韧性是结合亲和力和特异性的关键决定因素,并且灵活性变化可能导致强烈但不良后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号