首页> 美国卫生研究院文献>other >A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships
【2h】

A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships

机译:评估生物聚合物结构过程 - 财产关系的组合实验和计算程序综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials – elastin, silk, and collagen – and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.
机译:具有可调功能特性的量身定制的生物材料对于从药物输送到再生医学的许多应用都是理想的。为了提高生物聚合物材料功能的可预测性,需要考虑多个设计参数以及适当的模型。在本文中,我们回顾了与生物聚合物设计相关的合成和加工技术的现状,重点是在设计过程中自下而上的计算模型的集成。我们考虑了三个经过充分研究的生物聚合物材料的显着例子-弹性蛋白,丝绸和胶原蛋白-并评估了它们的层次结构,令人感兴趣的功能特性并对研究这些材料的现有方法进行了分类。我们发现,由于难以关联在不同的长度和时间尺度上获得的见解,因此在这些材料中很少使用同时使用实验和计算模型的集成设计方法。在这种情况下,多尺度工程提供了一种强大的手段,可以加快生物材料设计过程,从而开发出适合各种应用需求的定制材料。实验工具和计算工具的组合使用不仅在生物聚合物领域中具有非常广泛的适用性,而且通常可以用来调整其他聚合物和复合材料的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号