首页> 美国卫生研究院文献>other >Crystal structures of the Helicobacter pylori MTAN enzyme reveal specific interactions between S-adenosylhomocysteine and the 5’-alkylthio binding subsite
【2h】

Crystal structures of the Helicobacter pylori MTAN enzyme reveal specific interactions between S-adenosylhomocysteine and the 5’-alkylthio binding subsite

机译:幽门螺杆菌MTAN酶的晶体结构揭示了S-腺眼囊肌细胞和5-烷硫基结合底座之间的特异性相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The bacterial 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) enzyme is a multifunctional enzyme that catalyzes the hydrolysis of the N-ribosidic bond of at least four different adenosine-based metabolites: S-adenosylhomocysteine (SAH), 5’methylthioadenosine (MTA), 5’-deoxyadenosine (5’-DOA) and 6-amino-6-deoxyfutalosine. These activities place the enzyme at the hub of seven fundamental bacterial metabolic pathways: S-adenosylmethionine (SAM) utilization, polyamine biosynthesis, the purine salvage pathway, the methionine salvage pathway, the SAM radical pathways, autoinducer-2 biosynthesis, and menaquinone biosynthesis. The last pathway makes MTAN essential for H. pylori viability. Although structures of various bacterial and plant MTANs have been described, the interactions between the homocysteine moiety of SAH and the 5’-alkylthiol binding site of MTAN have never been resolved. We have solved crystal structures of an inactive mutant form of Helicobacter pylori MTAN bound to MTA and SAH to 1.63 and 1.20 Å, respectively. The active form of MTAN was also crystallized in the presence of SAH allowing structure determination of a ternary enzyme-product complex resolved at 1.50 Å. These structures identify interactions between the homocysteine moiety and the 5’-alkylthiol binding site of the enzyme. This information can be leveraged for the development of species-specific MTAN inhibitors that prevent the growth of H. pylori.
机译:细菌5'-甲基硫代腺苷/ S-腺苷同型半胱氨酸核苷酶(MTAN)是一种多功能酶,可催化至少四种不同的基于腺苷的代谢产物的N-核糖键的水解:S-腺苷同型半胱氨酸(SAH),5'甲基硫代腺苷( MTA),5'-脱氧腺苷(5'-DOA)和6-氨基-6-脱氧富他核苷。这些活动将酶置于七个基本细菌代谢途径的中心:S-腺苷甲硫氨酸(SAM)利用,多胺生物合成,嘌呤抢救途径,蛋氨酸抢救途径,SAM自由基途径,自诱导因子2生物合成和甲萘醌生物合成。最后一条途径使MTAN对于幽门螺杆菌的生存能力至关重要。尽管已经描述了各种细菌和植物MTAN的结构,但SAH的同型半胱氨酸部分与MTAN的5'-烷基硫醇结合位点之间的相互作用尚未得到解决。我们已经解决了幽门螺杆菌MTAN的非活性突变体形式的晶体结构,其与MTA和SAH的结合分别为1.63和1.20Å。 MTAN的活性形式也可以在SAH存在下结晶,从而可以确定解析为1.50Å的三元酶-产物复合物的结构。这些结构确定了高半胱氨酸部分与酶的5'-烷基硫醇结合位点之间的相互作用。该信息可用于开发阻止幽门螺杆菌生长的物种特异性MTAN抑制剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号