首页> 美国卫生研究院文献>other >A Suite of Activity-Based Probes for Cellulose Degrading Enzymes
【2h】

A Suite of Activity-Based Probes for Cellulose Degrading Enzymes

机译:基于活动的探针对纤维素降解酶一套房

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose degrading systems, and facilitates a greater understanding of the organismal role associated with biofuel development.
机译:微生物糖苷水解酶在纤维素生物质向高价值生物燃料的生化转化中起主要作用。厌氧纤维素分解细菌能够产生包含细胞粘附的纤维素酶,半纤维素酶,木聚糖酶和其他糖苷水解酶的多复合催化亚基,以促进高难降解纤维素和其他相关植物细胞壁多糖的降解。热纤梭菌是产生纤维素的细菌,其将快速繁殖速率与结晶纤维素的高效降解结合起来。在这里,我们已经开发并应用了一套二氟甲基苯基糖苷配基,N-卤代糖基胺和基于2-deoxy-2-fluoroglycoside活性的蛋白质谱(ABPP)探针来直接标记热纤梭菌纤维素酶分泌组。这些基于活性的探针(ABP)与炔烃合成,以利用点击化学的效用和多峰可能性,并增加用于LC-MS分析的酶活性位点。我们直接分析了ABP标记和未标记的全局MS数据,揭示了ABP对糖苷水解酶(GH)酶的选择性,以及大量包含完整纤维素的蛋白质的集合。通过确定每个ABP的反应性和选择性概况,我们证明了我们广泛分析细菌功能性纤维素降解机制的能力。 ABP的衍生化,包括反应性基团,糖苷结合基团的乙酰化以及单糖和双糖结合基团,在蛋白质标记中产生了很大的可变性。我们的探针套件适用于需氧和厌氧微生物纤维素降解系统,并有助于加深对与生物燃料开发相关的生物作用的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号