首页> 美国卫生研究院文献>other >Towards Estimation of HIV-1 Date of Infection: A Time-Continuous IgG-Model Shows That Seroconversion Does Not Occur at the Midpoint between Negative and Positive Tests
【2h】

Towards Estimation of HIV-1 Date of Infection: A Time-Continuous IgG-Model Shows That Seroconversion Does Not Occur at the Midpoint between Negative and Positive Tests

机译:估计HIV-1感染日期:时间连续的IgG模型显示阴性和阳性测试之间的中点不会发生血清转化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimating date of infection for HIV-1-infected patients is vital for disease tracking and informed public health decisions, but is difficult to obtain because most patients have an established infection of unknown duration at diagnosis. Previous studies have used HIV-1-specific immunoglobulin G (IgG) levels as measured by the IgG capture BED enzyme immunoassay (BED assay) to indicate if a patient was infected recently, but a time-continuous model has not been available. Therefore, we developed a logistic model of IgG production over time. We used previously published metadata from 792 patients for whom the HIV-1-specific IgG levels had been longitudinally measured using the BED assay. To account for patient variability, we used mixed effects modeling to estimate general population parameters. The typical patient IgG production rate was estimated at r = 6.72[approximate 95% CI 6.17,7.33]×10−3 OD-n units day−1, and the carrying capacity at K = 1.84[1.75,1.95] OD-n units, predicting how recently patients seroconverted in the interval t = (31,711) days. Final model selection and validation was performed on new BED data from a population of 819 Swedish HIV-1 patients diagnosed in 2002–2010. On an appropriate subset of 350 patients, the best model parameterization had an accuracy of 94% finding a realistic seroconversion date. We found that seroconversion on average is at the midpoint between last negative and first positive HIV-1 test for patients diagnosed in prospective/cohort studies such as those included in the training dataset. In contrast, seroconversion is strongly skewed towards the first positive sample for patients identified by regular public health diagnostic testing as illustrated in the validation dataset. Our model opens the door to more accurate estimates of date of infection for HIV-1 patients, which may facilitate a better understanding of HIV-1 epidemiology on a population level and individualized prevention, such as guidance during contact tracing.
机译:估计感染HIV-1的患者的感染日期对于疾病追踪和知情的公共卫生决策至关重要,但由于大多数患者在诊断时都已确定感染的持续时间,因此很难获得。先前的研究已使用通过IgG捕获BED酶免疫测定(BED测定)测量的HIV-1特异性免疫球蛋白G(IgG)水平来指示患者最近是否受到感染,但尚无时间连续模型。因此,我们开发了随时间推移产生IgG的逻辑模型。我们使用了先前发布的来自792名患者的元数据,这些患者已使用BED分析纵向测量了HIV-1特异性IgG水平。为了说明患者的变异性,我们使用了混合效应模型来估算总体人群参数。病人的典型IgG产生率估计为r = 6.72 [约95%CI 6.17,7.33]×10 -3 OD-n单位天 -1 ,容量以K = 1.84 [1.75,1.95] OD-n单位表示,预测患者在 t =(31,711)天之间进行血清转化的最新程度。最终模型的选择和验证是根据2002-2010年诊断的819名瑞典HIV-1患者的新BED数据进行的。在350名患者的适当子集中,最佳模型参数化找到一个实际的血清转化日期的准确度为94%。我们发现,对于前瞻性/队列研究(例如训练数据集中所包括的患者)诊断为患者的平均血清转化率在最后一次阴性和首次阳性HIV-1检测之间处于中间。相反,对于通过常规公共卫生诊断测试鉴定出的患者,血清转化严重偏向第一个阳性样品,如验证数据集所示。我们的模型为更准确地估计HIV-1患者的感染日期打开了大门,这可能有助于在人群水平上更好地了解HIV-1流行病学和进行个体化的预防,例如在接触者追踪期间提供指导。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号