首页> 美国卫生研究院文献>Frontiers in Plant Science >Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains
【2h】

Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains

机译:拟南芥中叶绿体NADPH依赖的硫氧还蛋白还原酶的过表达增强了叶片的生长并阐明了还原酶和硫氧还蛋白域的体内功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production.
机译:植物叶绿体具有通用的硫氧还蛋白系统,包括两种硫氧还蛋白还原酶和多种类型的硫氧还蛋白。质体定位的NADPH依赖性硫氧还蛋白还原酶(NTRC)在单个多肽中同时包含还原酶(NTRd)和硫氧还蛋白(TRXd)域,并形成同型二聚体。为了研究NTRC和NTRC结构域在体内的作用,我们用野生型和全长NTRC基因对拟南芥的ntrc基因敲除系进行了补充,其中NTRd或TRXd中的2-Cys基序被灭活。 ntrc线也可以用截短的NTRd或单独的TRXd进行转化。野生型NTRC的过表达通过增加玫瑰花结的叶大小和生物量产量来促进植物生长。 ntrc系与包含活性还原酶但无活性TRXd的全长NTRC基因互补,反之亦然,恢复了野生型叶绿体表型,部分恢复了玫瑰花生物量的产生,这表明NTRC结构域能够与其他区域相互作用叶绿体硫氧还蛋白系统。 ntrc背景中截短的NTRd或TRXd的过表达不能恢复野生型表型。 NTRC二聚体的三维结构建模表明,NTR域和TRX域之间的广泛相互作用进一步稳定了二聚体结构。然而,NTRd和TRXd之间的长连接子区域允许TRXd在二聚体中的位置具有灵活性。游离叶绿体硫氧还蛋白补充NTRC同型二聚体模型中的TRXd表明TRXf是与NTRC相互作用的最可能伴侣。我们提出,NTRC的过表达直接通过刺激叶绿体生物合成和由NTRC控制的保护途径,以及间接通过游离叶绿体硫氧还蛋白间接促进植物生物量产量。我们的数据表明,叶绿体硫醇氧化还原调节剂的过度表达具有增加植物和藻类物种生物燃料产量的潜力,适合可持续生物能源生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号