首页> 美国卫生研究院文献>other >A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images
【2h】

A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

机译:在3D光谱域光学相干断层扫描视神经头图像中联合评估青光眼的进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.
机译:青光眼是一种眼部疾病,其特征在于视神经头(ONH)和视野发生明显变化。青光眼可无症状发作,如果不进行治疗可导致失明。因此,早期发现疾病很重要,这样就可以开始治疗并预防失明。在这种情况下,用于眼部非侵入性成像的技术取得了重要进展,提供了定量工具来测量ONH形貌的结构变化,ONH形貌是青光眼检测和监测的基本要素。 3D光谱域光学相干断层扫描(SD-OCT)是一种光学成像技术,通常用于区分青光眼与健康受试者。在本文中,我们提出了使用3D SD-OCT图像检测青光眼进展的新框架。与以前的市售光谱域光学相干断层扫描仪提供的视网膜神经纤维层(RNFL)厚度测量的工作相反,我们考虑将整个3D体积用于变化检测。为了将先验知识,尤其是空间体素相关性整合到变化检测图中,我们建议使用马尔可夫随机场来处理此类相关性。为了适应错误肯定检测的存在,然后基于模糊逻辑分类器,将估计的变化检测图用于将3D SDOCT图像分类为“非进行性”和“进行性”青光眼类别。我们将提出的框架的诊断性能与现有的进展检测方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号