首页> 美国卫生研究院文献>other >GEODESIC REGRESSION OF IMAGE AND SHAPE DATA FOR IMPROVED MODELING OF 4D TRAJECTORIES
【2h】

GEODESIC REGRESSION OF IMAGE AND SHAPE DATA FOR IMPROVED MODELING OF 4D TRAJECTORIES

机译:用于改进4D轨迹建模的图像和形状数据的测地回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A variety of regression schemes have been proposed on images or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point parameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatomical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experiments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories.
机译:尽管可用的方法无法共同处理图像或形状,但已提出了多种回归方案。在本文中,我们提出了用于关节图像和形状回归的框架,该框架以一致的方式结合了图像以及解剖形状信息。演化由类似于线性回归的生成模型来描述,该模型完全由基线图像和形状(截距)和初始动量矢量(斜率)来表征。此外,我们的框架采用变形的控制点参数化,其中变形的维数由时间上解剖变化的复杂性决定,而不是由图像和/或几何数据的采样决定。我们推导了一种梯度下降算法,该算法可以同时估计基线图像和形状,控制点的位置以及动量。对真实医学数据的实验表明,我们的框架有效地结合了图像和形状信息,从而改善了4D(3D空间+时间)轨迹的建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号