首页> 美国卫生研究院文献>other >A Priori Knowledge and Probability Density Based Segmentation Method for Medical CT Image Sequences
【2h】

A Priori Knowledge and Probability Density Based Segmentation Method for Medical CT Image Sequences

机译:基于先验知识和概率密度的医学CT图像序列分割方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper briefly introduces a novel segmentation strategy for CT images sequences. As first step of our strategy, we extract a priori intensity statistical information from object region which is manually segmented by radiologists. Then we define a search scope for object and calculate probability density for each pixel in the scope using a voting mechanism. Moreover, we generate an optimal initial level set contour based on a priori shape of object of previous slice. Finally the modified distance regularity level set method utilizes boundaries feature and probability density to conform final object. The main contributions of this paper are as follows: a priori knowledge is effectively used to guide the determination of objects and a modified distance regularization level set method can accurately extract actual contour of object in a short time. The proposed method is compared to other seven state-of-the-art medical image segmentation methods on abdominal CT image sequences datasets. The evaluated results demonstrate our method performs better and has the potential for segmentation in CT image sequences.
机译:本文简要介绍了一种新颖的CT图像序列分割策略。作为我们策略的第一步,我们从对象区域提取先验强度统计信息,该信息由放射科医生手动分割。然后,我们为对象定义搜索范围,并使用投票机制为范围内的每个像素计算概率密度。此外,我们根据先前切片的对象的先验形状生成最佳的初始水平集轮廓。最后,改进的距离规则性水平集方法利用边界特征和概率密度来符合最终目标。本文的主要贡献如下:有效地利用先验知识指导目标的确定,改进的距离正则化水平集方法可以在短时间内准确地提取目标的实际轮廓。将该方法与腹部CT图像序列数据集上的其他七种最新医学图像分割方法进行了比较。评估结果表明我们的方法性能更好,并且有可能在CT图像序列中进行分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号