首页> 美国卫生研究院文献>other >Genome-Wide Association and Network Analysis of Lung Function in the Framingham Heart Study
【2h】

Genome-Wide Association and Network Analysis of Lung Function in the Framingham Heart Study

机译:Framingham心脏研究中肺功能的全基因组关联和网络分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single nucleotide polymorphisms have been found to be associated with pulmonary function using genome-wide association studies. However, lung function is a complex trait that is likely to be influenced by multiple gene-gene interactions besides individual genes. Our goal is to built a cellular network to explore the relationship between pulmonary function and genotypes by combining SNP level and network analyses using longitudinal lung function data from the Framingham Heart Study. We analyzed 2,698 genotyped participants from the Offspring cohort that had an average of 3.35 spirometry measurements per person for a mean length of 13 years. Repeated forced expiratory volume in one second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) were used as outcomes. Data were analyzed using linear mixed models for the association between lung function and alleles by accounting for the correlation among repeated measures over time within the same subject and within-family correlation. Network analyses were performed using dmGWAS and validated with data from the Third Generation cohort. Analyses identified SMAD3, TGFBR2, CD44, CTGF, VCAN, CTNNB1, SCGB1A1, PDE4D, NRG1, EPHB1,and LYN as contributors to pulmonary function. Most of these genes were novel that were not found previously using solely SNP-level analysis. This noval genes are involving the transformaing growth factor beta (TGFB)-SMAD pathway, Wnt/beta-catenin pathway, etc. Therefore, combining SNP-level and network analyses using longitudinal lung function data is a useful alternative strategy to identify risk genes.
机译:使用全基因组关联研究发现单核苷酸多态性与肺功能有关。然而,肺功能是一个复杂的特征,除了单个基因外,它还可能受到多种基因-基因相互作用的影响。我们的目标是通过使用Framingham心脏研究的纵向肺功能数据,通过结合SNP水平和网络分析,构建一个探索肺功能与基因型之间关系的细胞网络。我们分析了来自“后代”队列的2698名基因分型参与者,这些参与者平均每人平均进行了3.35次肺活量测定,平均时间为13年。一秒钟内重复使用强制呼气量(FEV1)和FEV1与强制肺活量(FVC)的比率作为结果。使用线性混合模型,通过考虑同一受试者内一段时间内重复测量之间的相关性和家庭内部相关性,使用线性混合模型分析肺功能与等位基因之间的关联。使用dmGWAS进行网络分析,并使用来自第三代队列的数据进行验证。分析确定SMAD3,TGFBR2,CD44,CTGF,VCAN,CTNNB1,SCGB1A1,PDE4D,NRG1,EPHB1和LYN是肺功能的贡献者。这些基因中的大多数都是新颖​​的,以前仅使用SNP级分析无法找到。该新手基因涉及转化生长因子β(TGFB)-SMAD途径,Wnt /β-catenin途径等。因此,结合使用纵向肺功能数据的SNP水平和网络分析是识别风险基因的有用替代策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号