首页> 美国卫生研究院文献>other >Part-Based Visual Tracking via Online Weighted P-N Learning
【2h】

Part-Based Visual Tracking via Online Weighted P-N Learning

机译:通过在线加权P-N学习进行基于零件的视觉跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel part-based tracking algorithm using online weighted P-N learning. An online weighted P-N learning method is implemented via considering the weight of samples during classification, which improves the performance of classifier. We apply weighted P-N learning to track a part-based target model instead of whole target. In doing so, object is segmented into fragments and parts of them are selected as local feature blocks (LFBs). Then, the weighted P-N learning is employed to train classifier for each local feature block (LFB). Each LFB is tracked through the corresponding classifier, respectively. According to the tracking results of LFBs, object can be then located. During tracking process, to solve the issues of occlusion or pose change, we use a substitute strategy to dynamically update the set of LFB, which makes our tracker robust. Experimental results demonstrate that the proposed method outperforms the state-of-the-art trackers.
机译:我们提出了一种使用在线加权P-N学习的新颖的基于零件的跟踪算法。通过考虑分类过程中样本的权重实现在线加权的P-N学习方法,提高了分类器的性能。我们应用加权P-N学习来跟踪基于零件的目标模型,而不是整个目标。在这种情况下,将对象分割成片段,然后选择其中的一部分作为局部特征块(LFB)。然后,采用加权的P-N学习训练每个局部特征块(LFB)的分类器。每个LFB分别通过相应的分类器进行跟踪。根据LFB的跟踪结果,可以定位物体。在跟踪过程中,为了解决遮挡或姿势变化的问题,我们使用了替代策略来动态更新LFB的集合,这使我们的跟踪器更强大。实验结果表明,所提出的方法优于最新的跟踪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号