首页> 美国卫生研究院文献>other >Predicting Postoperative Vomiting for Orthopedic Patients Receiving Patient-Controlled Epidural Analgesia with the Application of an Artificial Neural Network
【2h】

Predicting Postoperative Vomiting for Orthopedic Patients Receiving Patient-Controlled Epidural Analgesia with the Application of an Artificial Neural Network

机译:应用人工神经网络预测接受患者自控硬膜外镇痛的骨科患者的术后呕吐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Patient-controlled epidural analgesia (PCEA) was used in many patients receiving orthopedic surgery to reduce postoperative pain but is accompanied with certain incidence of vomiting. Predictions of the vomiting event, however, were addressed by only a few authors using logistic regression (LR) models. Artificial neural networks (ANN) are pattern-recognition tools that can be used to detect complex patterns within data sets. The purpose of this study was to develop the ANN based predictive model to identify patients with high risk of vomiting during PCEA used. From January to March 2007, the PCEA records of 195 patients receiving PCEA after orthopedic surgery were used to develop the two predicting models. The ANN model had a largest area under curve (AUC) in receiver operating characteristic (ROC) curve. The areas under ROC curves of ANN and LR models were 0.900 and 0.761, respectively. The computer-based predictive model should be useful in increasing vigilance in those patients most at risk for vomiting while PCEA is used, allowing for patient-specific therapeutic intervention, or even in suggesting the use of alternative methods of analgesia.
机译:患者自控硬膜外镇痛(PCEA)用于许多接受整形外科手术的患者,以减轻术后疼痛,但伴有一定的呕吐发生率。但是,只有少数作者使用逻辑回归(LR)模型处理了呕吐事件的预测。人工神经网络(ANN)是模式识别工具,可用于检测数据集中的复杂模式。这项研究的目的是建立基于ANN的预测模型,以识别使用PCEA期间呕吐风险高的患者。从2007年1月至2007年3月,使用195例整形外科手术后接受PCEA的患者的PCEA记录来建立两个预测模型。在接收器工作特性(ROC)曲线中,ANN模型的曲线下面积(AUC)最大。 ANN和LR模型的ROC曲线下面积分别为0.900和0.761。基于计算机的预测模型应有助于在使用PCEA时最容易出现呕吐风险的患者中提高警惕性,允许患者进行特定的治疗干预,甚至建议使用其他镇痛方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号