首页> 美国卫生研究院文献>other >Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis
【2h】

Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

机译:微生物和垃圾质量控制对垃圾分解的影响:建模分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days.
机译:土壤中植物凋落物的分解是一个动态过程,在此过程中底物化学和微生物控制相互作用。我们使用基于行会的分解模型(GDM)的修订版更清楚地量化了这些对照,在该模型中,我们使用了反向Michaelis-Menten方法来模拟来自四个不同玉米基因型的根的短期(112天)根分解主要在木质素化学中。木质素降解和凋落物的全纤维素(纤维素+半纤维素)级分之间的代谢关系表明,随着木质素浓度(LCI)的增加,腐烂率的降低与阿拉伯木聚糖链中阿拉伯聚糖取代水平有关(即阿拉伯聚糖木聚糖或A∶X比率)以及半纤维素链与木质素在植物细胞壁中的交联程度。这种模式在基因型之间以及每个基因型内的逐步分解过程中是一致的。而且,从分解开始就通过这些交联来控制衰变速率。我们还发现有必要将凋落物C的Van Soest可溶性(不稳定)部分分成两个部分:一个快速分解,另一个更持久。模拟的微生物产生与最近的研究一致,这表明尽管垫料质量迅速损失,但分解速度更快的材料仍会产生大量潜在的顽强微生物产品。敏感性分析未能识别出能始终解释大部分模型变化的任何模型参数,这表明采用反向Michaelis-Menten方法进行的垫料质量与微生物活性之间的反馈控制导致了稳定的模型行为。通过对12种不同基因型玉米根的分解得出的独立数据集进行模型外推,平均得出的数据是在112天内观察到的呼吸速率和总CO2排放量不到3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号