首页> 美国卫生研究院文献>Frontiers in Plant Science >When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts
【2h】

When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts

机译:当植物的产量不足或根本没有时:微生物宿主中黄酮类化合物的代谢工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As a result of the discovery that flavonoids are directly or indirectly connected to health, flavonoid metabolism and its fascinating molecules that are natural products in plants, have attracted the attention of both the industry and researchers involved in plant science, nutrition, bio/chemistry, chemical bioengineering, pharmacy, medicine, etc. Subsequently, in the past few years, flavonoids became a top story in the pharmaceutical industry, which is continually seeking novel ways to produce safe and efficient drugs. Microbial cell cultures can act as workhorse bio-factories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a selective flavonoid. Furthermore, metabolic engineering methodology is used to reinforce what nature does best by correcting the inadequacies and dead-ends of a metabolic pathway. Combinatorial biosynthesis techniques led to the discovery of novel ways of producing natural and even unnatural plant flavonoids, while, in addition, metabolic engineering provided the industry with the opportunity to invest in synthetic biology in order to overcome the currently existing restricted diversification and productivity issues in synthetic chemistry protocols. In this review, is presented an update on the rationalized approaches to the production of natural or unnatural flavonoids through biotechnology, analyzing the significance of combinatorial biosynthesis of agricultural/pharmaceutical compounds produced in heterologous organisms. Also mentioned are strategies and achievements that have so far thrived in the area of synthetic biology, with an emphasis on metabolic engineering targeting the cellular optimization of microorganisms and plants that produce flavonoids, while stressing the advances in flux dynamic control and optimization. Finally, the involvement of the rapidly increasing numbers of assembled genomes that contribute to the gene- or pathway-mining in order to identify the gene(s) responsible for producing species-specific secondary metabolites is also considered herein.
机译:由于发现类黄酮与健康直接或间接相关,类黄酮代谢及其迷人的分子(植物中的天然产物)吸引了业界以及从事植物科学,营养,生物/化学,随后,在过去的几年中,黄酮类化合物成为制药行业的头条新闻,该领域正在不断寻求生产安全有效的药物的新方法。微生物细胞培养物可以通过提供其代谢机制来充当条件的生物工厂,以优化条件并提高选择性类黄酮的生产率。此外,新陈代谢工程方法学可用于通过纠正新陈代谢途径的不足和死角来强化自然界最有效的方法。组合生物合成技术导致发现生产天然甚至非天然植物类黄酮的新颖方法,同时,代谢工程为该行业提供了投资合成生物学的机会,以克服目前存在的有限的多样化和生产力问题。合成化学方案。在这篇综述中,介绍了通过生物技术生产天然或非天然类黄酮的合理方法的最新进展,分析了异源生物中农业/医药化合物的组合生物合成的意义。还提到了迄今为​​止在合成生物学领域蓬勃发展的战略和成就,重点是针对以产生黄酮类化合物的微生物和植物的细胞优化为目标的代谢工程,同时强调了通量动态控制和优化的进展。最后,本文还考虑了迅速增加数量的组装基因组的参与,这些组装基因组有助于基因挖掘或途径挖掘,以鉴定负责产生物种特异性次级代谢产物的基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号