首页> 美国卫生研究院文献>other >Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability
【2h】

Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

机译:蛋白质-配体结合中的热力学驱动力的空间分析和量化:结合位点的可变性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol.
机译:小分子-蛋白质结合背后的热力学驱动力仍未被很好地理解,包括与不同结合口袋中不同类型配体相关的那些力的可变性。为了更好地理解这些现象,我们计算了丙烷和甲醇结合到因子Xa和p38 MAP激酶上多个口袋的分子自由度的空间分辨热力学贡献。结合热力学是使用基于统计热力学的端点方法计算的,该端点方法应用于包含蛋白质-配体复合物和相应的游离态的规范集合中的显式溶剂环境中。水和配体自由度的能量和熵贡献由构象整体计算得出,为结合机理提供了前所未有的细节水平。直接的蛋白质-配体相互作用能在非极性和极性结合中都起着重要作用,这与水的重组能相当。结合后失去与水的相互作用会强烈补偿这些作用,从而导致结合焓较小。对于两种溶质,发现水重组的熵都有利于结合,这与“疏水作用”的经典观点一致。根据结合袋的特性,可以观察到能量熵补偿和增强机制。值得注意的是,在原子分辨率下可视化对结合的热力学贡献的空间分布的能力显示出水对丙烷与甲醇结合的热力学贡献的显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号