首页> 美国卫生研究院文献>other >An Analytic Description of Electrodynamic Dispersion in Free-Flow Zone Electrophoresis
【2h】

An Analytic Description of Electrodynamic Dispersion in Free-Flow Zone Electrophoresis

机译:自由流区电泳中电动分散的解析描述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale.
机译:本工作分析了样品流在自由流动区电泳(FFZE)室中的电动力分散,这是由于导管侧壁在通道宽度上部分或完全阻塞了电渗流(EOF)所致。假设EOF的这种阻塞会在横向方向上产生压力驱动的回流,以保持系统中的流量平衡。已考虑将分析物流放置在远离通道侧面区域的基于平行板的FFZE设备中,以简化当前分析。应用矩量法公式化,得出了在这些条件下稳态下样品区的变化与其在分离室中位置的函数关系的解析表达式。已经显示出由于电动力分散现象而引起的流展宽的增加是分子扩散和样品注入的贡献的补充,并且对于样品流的固定横向迁移距离简单地修改了流体动力分散项的系数。而且,当大部分EOF被通道侧壁阻塞时,这种分散机制可以控制分析物区域的总体空间变化。分析还显示,由于在没有横向电场的情况下,FFZE腔室中有害的压力驱动横流,分析物流不会经历任何流体动力学展宽。使用蒙特卡洛模拟已验证了上述结果,该结果进一步证明,虽然通道出口处的样品浓度曲线仅在FFZE腔室中接近高斯分布,但比轴向压力驱动速度和特征扩散时间的乘积更长。在系统中,即使在比该长度标尺短得多的分析导管中,泰勒-阿里斯色散极限也能很好地描述分析物流的空间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号