首页> 美国卫生研究院文献>other >ESTIMATING HETEROGENEOUS GRAPHICAL MODELS FOR DISCRETE DATA WITH AN APPLICATION TO ROLL CALL VOTING
【2h】

ESTIMATING HETEROGENEOUS GRAPHICAL MODELS FOR DISCRETE DATA WITH AN APPLICATION TO ROLL CALL VOTING

机译:估计离散数据的异构图形模型及其在滚动调用中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of jointly estimating a collection of graphical models for discrete data, corresponding to several categories that share some common structure. An example for such a setting is voting records of legislators on different issues, such as defense, energy, and healthcare. We develop a Markov graphical model to characterize the heterogeneous dependence structures arising from such data. The model is fitted via a joint estimation method that preserves the underlying common graph structure, but also allows for differences between the networks. The method employs a group penalty that targets the common zero interaction effects across all the networks. We apply the method to describe the internal networks of the U.S. Senate on several important issues. Our analysis reveals individual structure for each issue, distinct from the underlying well-known bipartisan structure common to all categories which we are able to extract separately. We also establish consistency of the proposed method both for parameter estimation and model selection, and evaluate its numerical performance on a number of simulated examples.
机译:我们考虑共同估计离散数据图形模型的集合的问题,这些模型对应于共享某些共同结构的几个类别。这种设置的一个示例是对立法者在国防,能源和医疗保健等不同问题上的投票记录。我们开发了一个马尔可夫图形模型来表征由此类数据引起的异构依赖结构。该模型通过联合估算方法进行拟合,该方法保留了基本的公共图结构,但也允许网络之间存在差异。该方法采用针对所有网络中共同的零交互作用的组惩罚。我们采用该方法来描述美国参议院内部网络的一些重要问题。我们的分析揭示了每个问题的个人结构,与我们能够分别提取的所有类别共有的潜在的众所周知的两党结构不同。我们还建立了所提出方法在参数估计和模型选择方面的一致性,并在许多模拟实例上评估了其数值性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号