首页> 美国卫生研究院文献>other >Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements
【2h】

Exploring Electron/Proton Transfer and Conformational Changes in the Nitrogenase MoFe Protein and FeMo-cofactor Through Cryoreduction/EPR Measurements

机译:通过低温还原/ EPR测量探索氮酶MoFe蛋白和FeMo辅因子中的电子/质子转移和构象变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We combine cryoreduction/annealing/EPR measurements of nitrogenase MoFe protein with results of earlier investigations to provide a detailed view of the electron/proton transfer events and conformational changes that occur during early stages of [e/H+] accumulation by the MoFe protein. This includes reduction of (i) the non-catalytic state of the iron-molybdenum cofactor (FeMo-co) active site that is generated by chemical oxidation of the resting-state cofactor (S = 3/2)) within resting MoFe (E0), and (ii) the catalytic state that has accumulated n =1 [e/H+] above the resting-state level, denoted E1(1H) (S ≥ 1) in the Lowe-Thorneley kinetic scheme. FeMo-co does not undergo a major change of conformation during reduction of oxidized FeMo-co. In contrast, FeMo-co undergoes substantial conformational changes during the reduction of E0 to E1(1H), and of E1(1H) to E2(2H) (n = 2; S = 3/2). The experimental results further suggest that the E1(1H) → E2(2H) step involves coupled delivery of a proton and electron (PCET) to FeMo-co of E1(H) to generate a non-equilibrium S = ½ form E2(2H)*. This subsequently undergoes conformational relaxation and attendant change in FeMo-co spin state, to generate the equilibrium E2(2H) (S = 3/2) state. Unexpectedly, these experiments also reveal conformational coupling between FeMo-co and P-cluster, and between Fe protein binding and FeMo-co, which might play a role in gated ET from reduced Fe protein to FeMo-co.
机译:我们将固氮酶MoFe蛋白的低温还原/退火/ EPR测量与早期研究结果结合起来,以详细了解[e - / H早期阶段发生的电子/质子转移事件和构象变化MoFe蛋白的 + ]积累。这包括降低(i)静止MoFe(E0)中的静止态辅助因子(S = 3/2)的化学氧化产生的铁钼辅助因子(FeMo-co)活性位的非催化态),以及(ii)高于静止状态水平累积n = 1 [e - / H + ]的催化状态,表示为E1(1H)(S ≥1)在Lowe-Thorneley动力学方案中。 FeMo-co在氧化的FeMo-co还原过程中不会发生构象的重大变化。相反,FeMo-co在E0还原为E1(1H)和E1(1H)还原为E2(2H)时经历了构象变化(n = 2; S = 3/2)。实验结果进一步表明,E1(1H)→E2(2H)步骤涉及将质子和电子(PCET)耦合传递到E1(H)的FeMo-co以生成E2(2H)的非平衡S =½ )*。随后,它在FeMo-co自旋态中经历构象松弛和伴随的变化,以生成平衡E2(2H)(S = 3/2)状态。出乎意料的是,这些实验还揭示了FeMo-co与P-簇之间以及Fe蛋白结合与FeMo-co之间的构象偶联,这可能在从还原Fe蛋白到FeMo-co的门控ET中起作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号