首页> 美国卫生研究院文献>other >Outlier-based detection of unusual patient-management actions: an ICU study
【2h】

Outlier-based detection of unusual patient-management actions: an ICU study

机译:基于异常值的异常患者管理行为检测:ICU研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Medical errors remain a significant problem in healthcare. This paper investigates a data-driven outlier-based monitoring and alerting framework that uses data in the Electronic Medical Records (EMRs) repositories of past patient cases to identify any unusual clinical actions in the EMR of a current patient. Our conjecture is that these unusual clinical actions correspond to medical errors often enough to justify their detection and alerting. Our approach works by using EMR repositories to learn statistical models that relate patient states to patient-management actions. We evaluated this approach on the EMR data for 24,658 intensive care unit (ICU) patient cases. A total of 16,500 cases were used to train statistical models for ordering medications and laboratory tests given the patient state summarizing the patient’s clinical history. The models were applied to a separate test set of 8,158 ICU patient cases and used to generate alerts. A subset of 240 alerts generated by the models were evaluated and assessed by eighteen ICU clinicians. The overall true positive rates for the alerts (TPARs) ranged from 0.44 to 0.71. The TPAR for medication order alerts specifically ranged from 0.31 to 0.61 and for laboratory order alerts from 0.44 to 0.75. These results support outlier-based alerting as a promising new approach to data-driven clinical alerting that is generated automatically based on past EMR data.
机译:医疗错误仍然是医疗保健中的重要问题。本文研究了一个基于数据驱动的基于异常值的监视和警报框架,该框架使用过去患者病例的电子病历(EMR)存储库中的数据来识别当前患者EMR中的任何异常临床行为。我们的推测是,这些异常的临床行为通常与医疗错误相对应,足以证明其发现和发出警报的合理性。我们的方法通过使用EMR存储库来学习将患者状态与患者管理行为相关的统计模型。我们根据24,658例重症监护病房(ICU)患者病例的EMR数据评估了该方法。鉴于患者状态总结了患者的临床病史,总共使用了16,500个案例来训练用于订购药物和实验室测试的统计模型。这些模型分别应用于8158个ICU患者案例的测试集中,并用于生成警报。由模型生成的240个警报的子集由18位ICU临床医生进行了评估。警报的总体真实阳性率(TPAR)为0.44至0.71。药品订购警报的TPAR专门在0.31到0.61之间,实验室订购警报的TPAR在0.44到0.75之间。这些结果支持基于异常值的警报,这是一种基于数据的临床警报的有希望的新方法,该方法可基于过去的EMR数据自动生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号