首页> 美国卫生研究院文献>other >Relative Binding Free Energy Calculations Applied to Protein Homology Models
【2h】

Relative Binding Free Energy Calculations Applied to Protein Homology Models

机译:相对结合自由能计算应用于蛋白质同源性模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A significant challenge and potential high-value application of computer-aided drug design is the accurate prediction of protein–ligand binding affinities. Free energy perturbation (FEP) using molecular dynamics (MD) sampling is among the most suitable approaches to achieve accurate binding free energy predictions, due to the rigorous statistical framework of the methodology, correct representation of the energetics, and thorough treatment of the important degrees of freedom in the system (including explicit waters). Recent advances in sampling methods and force fields coupled with vast increases in computational resources have made FEP a viable technology to drive hit-to-lead and lead optimization, allowing for more efficient cycles of medicinal chemistry and the possibility to explore much larger chemical spaces. However, previous FEP applications have focused on systems with high-resolution crystal structures of the target as starting points—something that is not always available in drug discovery projects. As such, the ability to apply FEP on homology models would greatly expand the domain of applicability of FEP in drug discovery. In this work we apply a particular implementation of FEP, called FEP+, on congeneric ligand series binding to four diverse targets: a kinase (Tyk2), an epigenetic bromodomain (BRD4), a transmembrane GPCR (A2A), and a protein–protein interaction interface (BCL-2 family protein MCL-1). We apply FEP+ using both crystal structures and homology models as starting points and find that the performance using homology models is generally on a par with the results when using crystal structures. The robustness of the calculations to structural variations in the input models can likely be attributed to the conformational sampling in the molecular dynamics simulations, which allows the modeled receptor to adapt to the “real” conformation for each ligand in the series. This work exemplifies the advantages of using all-atom simulation methods with full system flexibility and offers promise for the general application of FEP to homology models, although additional validation studies should be performed to further understand the limitations of the method and the scenarios where FEP will work best.
机译:准确预测蛋白质-配体结合亲和力是计算机辅助药物设计的一项重大挑战和潜在的高价值应用。由于该方法的严格的统计框架,正确的能量学表示以及对重要程度的彻底处理,使用分子动力学(MD)采样的自由能扰动(FEP)是实现准确的结合自由能预测的最合适方法之一。系统的自由(包括明确的水域)。采样方法和力场的最新进展以及计算资源的大量增加已使FEP成为可行的技术,可推动铅对铅和铅的优化,从而使药物化学的循环效率更高,并有可能探索更大的化学空间。但是,以前的FEP应用程序集中在以目标的高分辨率晶体结构为起点的系统上-在药物开发项目中并不总是可用。这样,将FEP应用于同源性模型的能力将极大地扩展FEP在药物发现中的适用范围。在这项工作中,我们将一种称为FEP +的FEP的特定实现方式应用于与四个不同目标结合的同类配体系列:激酶(Tyk2),表观遗传溴结构域(BRD4),跨膜GPCR(A2A)和蛋白质-蛋白质相互作用接口(BCL-2家族蛋白MCL-1)。我们以晶体结构和同源性模型为起点应用FEP +,发现使用同源性模型的性能通常与使用晶体结构时的结果相当。输入模型中结构变化的计算稳健性可能归因于分子动力学模拟中的构象采样,这使建模的受体能够适应系列中每个配体的“真实”构象。这项工作例证了使用具有全系统灵活性的全原子模拟方法的优势,并为将FEP普遍应用于同源性模型提供了希望,尽管还应进行额外的验证研究以进一步了解该方法的局限性以及FEP将要应用的场景。工作最好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号