首页> 美国卫生研究院文献>other >Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity
【2h】

Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

机译:基于代理的线粒体建模将亚细胞动力学联系到细胞稳态和异质性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
机译:线粒体是半自治细胞器,​​通过氧化磷酸化为细胞生物化学提供能量。在一个细胞内,数百个移动线粒体经历融合和裂变事件以形成动态网络。这些形态学和流动性动力学对于维持线粒体功能稳态是必不可少的,并且改变既影响又反映了细胞应激状态。线粒体的稳态进一步依赖于生产(生物发生)和通过选择性自噬(有丝分裂)去除受损的线粒体。尽管线粒体功能,动力学,生物发生和线粒体吞噬是高度整合的过程,但尚未完全了解如何在细胞中建立系统控制以维持体内稳态或响应生物能需求。在这里,我们使用基于代理的建模(ABM)来集成分子和成像知识集,并模拟线粒体的种群动态及其对环境能量需求的响应。使用高维参数搜索,我们整合了实验测量的线粒体生物发生和线粒体吞噬率,并使用敏感性分析,确定了参数对种群体内稳态的影响。通过研究具有不同线粒体质量的细胞亚群的动力学,我们的方法揭示了线粒体群体的系统特性:(1)线粒体融合和裂变活动迅速建立了线粒体亚群稳态,而线粒体的总细胞水平改变了融合和裂变活动及亚群分布; (2)限制线粒体移动性的方向性不会改变形态亚群的分布,但会增加网络传输的动态性; (3)维持线粒体质量稳态并响应生物能压力需要线粒体动力学与细胞生物能状态相结合。最后,我们的模型(4)提出了线粒体形态和高能应激状态的细胞间变异性的来源以及胁迫条件的放大。总体而言,我们的建模方法整合了生化和成像方面的知识,并提出了一种新颖的开放式建模方法来研究线粒体时空动态如何促进功能稳态,以及亚细胞器细胞异质性如何促进细胞异质性的出现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号