首页> 美国卫生研究院文献>other >Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?
【2h】

Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

机译:使用生理系统模型解释代谢记忆现象:葡萄糖归一化后是什么驱动氧化应激?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.
机译:高血糖症通常与氧化应激有关,氧化应激在糖尿病相关并发症中起关键作用。在体内和体外,葡萄糖水平和氧化应激之间已经建立了复杂的定量关系。例如,已知葡萄糖正常化后氧化应激持续存在,这种现象被称为代谢记忆。同样,与高,恒定葡萄糖水平的患者相比,不受控制的葡萄糖水平似乎对糖尿病患者(非恒定葡萄糖水平)更有害。当前研究的目的是使用一种机制生理系统建模方法来描述这种行为的潜在机制,该方法捕获并整合了基本的潜在病理生理过程。提出的模型基于常微分方程组。它描述了活性氧产生潜能(ROS),ROS诱导的细胞改变和随后的适应机制之间的相互作用。使用不同来源的实验信息来校准模型参数,包括暴露于恒定和振荡葡萄糖水平的各种浓度曲线的细胞培养物中的ROS产生。该模型在葡萄糖归一化后充分再现了ROS过量生成。这种行为似乎是由ROS和ROS诱导的细胞变化之间的正反馈规则驱动的。由不稳定的葡萄糖水平引起的进一步的与氧化应激相关的有害作用可以通过细胞不能适应动态环境来解释。在葡萄糖正常化阶段,细胞对不稳定的高葡萄糖的适应能力下降,并且葡萄糖的进一步增加促进相似或更高的氧化应激。相反,在暴露于恒定高葡萄糖的细胞中,观察到由适应驱动的ROS产生潜力逐渐降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号