Insecticide usage in the United States is ubiquitous in urban, suburban, and rural environments. There is accumulating evidence that insecticides adversely affect non-target wildlife species, including birds, causing mortality, reproductive impairment, and indirect effects through loss of prey base, and the type and magnitude of such effects differs by chemical class, or mode of action. In evaluating data for an insecticide registration application and for registration review, scientists at the United States Environmental Protection Agency (USEPA) assess the fate of the insecticide and the risk the insecticide poses to the environment and non-target wildlife. Current USEPA risk assessments for pesticides generally rely on endpoints from laboratory based toxicity studies focused on groups of individuals and do not directly assess population-level endpoints. In this paper, we present a mechanistic model, which allows risk assessors to estimate the effects of insecticide exposure on the survival and seasonal productivity of birds known to forage in agricultural fields during their breeding season. This model relies on individual-based toxicity data and translates effects into endpoints meaningful at the population level (i.e., magnitude of mortality and reproductive impairment). The model was created from two existing USEPA avian risk assessment models, the Terrestrial Investigation Model (TIM v.3.0) and the Markov Chain Nest Productivity model (MCnest). The integrated TIM/MCnest model was used to assess the relative risk of 12 insecticides applied via aerial spray to control corn pests on a suite of 31 avian species known to forage in cornfields in agroecosystems of the Midwest, USA. We found extensive differences in risk to birds among insecticides, with chlorpyrifos and malathion (organophosphates) generally posing the greatest risk, and bifenthrin and λ-cyhalothrin (pyrethroids) posing the least risk. Comparative sensitivity analysis across the 31 species showed that ecological trait parameters related to the timing of breeding and reproductive output per nest attempt offered the greatest explanatory power for predicting the magnitude of risk. An important advantage of TIM/MCnest is that it allows risk assessors to rationally combine both acute (lethal) and chronic (reproductive) effects into a single unified measure of risk.
展开▼
机译:在美国,在城市,郊区和农村环境中普遍使用杀虫剂。越来越多的证据表明,杀虫剂会对包括鸟类在内的非目标野生动植物物种产生不利影响,从而导致其死亡,繁殖障碍以及通过丧失猎物碱而造成的间接影响,而且这种影响的类型和程度因化学类别或作用方式而异。在评估杀虫剂注册申请和注册审查的数据时,美国环境保护局(USEPA)的科学家评估了杀虫剂的命运以及杀虫剂对环境和非目标野生生物构成的风险。当前的USEPA农药风险评估通常依赖于基于实验室毒性研究的终点,该毒性研究的重点是个人群体,而不是直接评估人群水平的终点。在本文中,我们提出了一种机械模型,该模型可以使风险评估人员估算杀虫剂暴露对在繁殖季节在农田中觅食的家禽的存活率和季节性生产力的影响。该模型依赖于基于个体的毒性数据,并将影响转化为在人群水平上有意义的终点(即死亡率和生殖损害的程度)。该模型是根据两个现有的USEPA禽类风险评估模型创建的,即陆地调查模型(TIM v.3.0)和马尔可夫链巢生产力模型(MCnest)。 TIM / MCnest集成模型用于评估通过空中喷雾施用的12种杀虫剂的相对风险,以控制美国31种已知在美国中西部农业生态系统的玉米田中觅食的鸟类的玉米害虫。我们发现,杀虫剂对鸟类的风险存在很大差异,毒死rif和马拉硫磷(有机磷酸盐)的风险最大,而联苯菊酯和λ氟氰菊酯(拟除虫菊酯)的风险最小。对31个物种的敏感性比较分析表明,与繁殖时机和每个巢的繁殖产量有关的生态性状参数为预测风险的大小提供了最大的解释力。 TIM / MCnest的一个重要优点是,它使风险评估人员可以将急性(致命)和慢性(生殖)影响合理地组合到一个统一的风险度量中。
展开▼