首页> 美国卫生研究院文献>other >Basal Ganglia Movement Disorders and Deep Brain Stimulation: Advances Made Through Non-Human Primate Research
【2h】

Basal Ganglia Movement Disorders and Deep Brain Stimulation: Advances Made Through Non-Human Primate Research

机译:基底神经节运动障碍和深部脑刺激:非人类灵长类动物研究取得的进展。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Studies in non-human primates (NHP) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson’s disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as ‘motor’, ‘oculomotor’, ‘associative’ and ‘limbic’ circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson’s disease. While ablative procedures were first used first for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson’s disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.
机译:对非人类灵长类动物(NHP)的研究已使我们对基底神经节的功能以及运动不足的运动障碍(如帕金森氏病)和运动过度障碍(如舞蹈症和肌张力障碍)的病理生理机制有了重要的了解。由于NHP的大脑在解剖学上与人类的大脑非常接近,因此与其他物种相比,NHP可以更真实地模拟疾病状态以及诸如深部脑刺激(DBS)之类的医学和外科手术方法的效果。根据目前受到NHP研究影响的基底神经节回路模型,基底神经节被视为隔离网络的组成部分,这些网络从特定的皮质区域散发,穿过基底神经节和腹侧丘脑,然后返回额叶皮层根据所涉及的不同皮质区域的功能域,将这些网络指定为“运动”,“动眼”,“关联”和“边缘”回路。这些网络的功能受到纹状体中多巴胺释放的强烈调节。纹状体多巴胺释放会改变纹状体投射神经元的活性,进而影响(抑制性的)基底神经节输出。在帕金森病中,纹状体多巴胺的丧失导致基底神经节输出神经元放电的振荡爆发模式的出现,相邻基底神经节神经元放电的同步性增加以及基底神经节输出的整体增加。这些发现的相关性在帕金森病的NHP模型中证实了丘脑下核(基底神经节的主要成分之一)水平上的运动回路失活的抗帕金森效应。这一发现也为复兴使用外科手术治疗帕金森氏病的患者做出了重要贡献。虽然首先将消融术用于此目的,但现在已被丘脑下核或内苍白节的DBS所取代。这些程序不仅对帕金森氏症有效,而且对因与帕金森氏病不同的病理生理变化而导致的运动过度状态(例如舞蹈症或肌张力障碍)也有效。因此,这些干预可能不会抵消运动障碍的病理生理学的特定方面,但会非特异性地消除不同类型的破坏性基底神经节输出的影响,这些输出是来自基底神经节下游运动回路的相对完整部分的结果。从NHP的研究中获得的知识对于我们了解运动障碍的病理生理学,DBS对脑网络活动的影响以及为运动障碍和其他神经或精神疾病患者开发更好的治疗方法仍然至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号