首页> 外文学位 >Data-Driven Optimization of Deep Brain Stimulation for Movement Disorders
【24h】

Data-Driven Optimization of Deep Brain Stimulation for Movement Disorders

机译:数据驱动的深部脑刺激对运动障碍的优化

获取原文
获取原文并翻译 | 示例

摘要

Deep brain stimulation (DBS) is an effective therapy for ameliorating motor symptoms associated with Parkinson's disease (PD) and essential tremor (ET). DBS is a surgical procedure in which implanted electrodes are placed near brain structures believed to cause pathological motor disorder behaviors. Subcortical brain structures in thalamus and basal ganglia are typical DBS targets for PD and ET therapy, and modern DBS systems allow customization of therapeutic stimulation patterns through control of stimulation location, amplitude, pulsewidth, and frequency in order to optimize therapy on a patient-specific basis. Despite the technological capabilities of implanted DBS systems, current clinical implementation is limited by a scarcity of DBS specialty clinics and variable, subjective clinician performance in assessing patient symptoms and systematically selecting optimal DBS settings for therapy, a process known as programming. Compounding this problem is a dated and inefficient healthcare system that requires patients to travel to clinic to receive DBS programming updates, oftentimes at great expense both to patients and healthcare providers.;In this dissertation, we investigate and demonstrate experimental data-driven methodologies and algorithms aimed at improving DBS therapy for PD and ET patients. Particularly, we develop adaptive DBS systems by coupling low-cost commercial sensors with stimulation control and demonstrate the therapy potential through clinical experiments with human subjects diagnosed with PD and ET. We make use of a commercially available wearable smartwatch and show that clinical ratings for tremor and bradykinesia can accurately be classified on the basis of inertial measurement unit (IMU) data. We embed this feature in a software algorithm for automated DBS programming that is demonstrated to perform at the level of expert clinicians in selecting optimal DBS settings for therapy in PD and ET patients. We further use this platform to investigate neural correlates and biomarkers of effective DBS in ET patients using recorded local field potentials (LFPs) from an electrocorticographic (ECoG) strip placed over motor cortex. Scalable methods and algorithms for automatically programming DBS when considering a large number of candidate DBS settings are also developed in detail. Finally, we address the problem of closed-loop DBS, in which stimulation is delivered in a responsive manner to patient symptoms, by formulating a model-based approach using system identification experiments, hybrid systems modeling, and predictive control.;The results presented in this dissertation may improve patient care, patient quality of life, and the cost-effectiveness of DBS therapy for PD and ET patients. Additionally, the novel results presented on neural stimulation optimization may be useful more broadly in the growing medical and research fields of neuromodulation and bioelectronic medicine. We conclude with a discussion concerning how to integrate this data-driven approach to DBS therapy in modern healthcare systems, and we discuss the relevance of these results in light of anticipated technological developments in DBS systems.
机译:深部脑刺激(DBS)是一种有效的疗法,可减轻与帕金森氏病(PD)和原发性震颤(ET)相关的运动症状。 DBS是一种外科手术,其中将植入的电极放置在被认为会导致病理性运动障碍行为的大脑结构附近。丘脑和基底神经节的皮层下大脑结构是PD和ET治疗的典型DBS目标,现代DBS系统允许通过控制刺激位置,幅度,脉宽和频率来定制治疗性刺激模式,从而优化针对特定患者的治疗基础。尽管具有植入式DBS系统的技术能力,但当前的临床实施受到DBS专科诊所的匮乏以及在评估患者症状和系统地选择最佳DBS设置进行治疗(这是一种编程)的过程中受主观临床医生的影响而受到限制。使这个问题复杂化的是一个过时且效率低下的医疗保健系统,该系统要求患者前往诊所接受DBS程序更新,这通常对患者和医疗保健提供者都造成了巨大的费用。;本论文中,我们研究并演示了实验数据驱动的方法和算法旨在改善针对PD和ET患者的DBS治疗。特别是,我们通过将低成本的商用传感器与刺激控制相结合来开发自适应DBS系统,并通过与被诊断为PD和ET的人类受试者的临床实验,证明了其治疗潜力。我们利用可购买到的可穿戴智能手表,显示出可以根据惯性测量单位(IMU)数据对震颤和运动迟缓的临床评分进行准确分类。我们将此功能嵌入到用于自动DBS编程的软件算法中,该算法被证明可在专家临床医生的水平上为PD和ET患者选择最佳DBS设置进行治疗。我们进一步使用该平台,使用记录在运动皮层上的皮质电图(ECoG)条记录的局部场电势(LFP),调查ET患者中有效DBS的神经相关和生物标记。还详细考虑了在考虑大量候选DBS设置时用于自动编程DBS的可扩展方法和算法。最后,我们通过使用系统识别实验,混合系统建模和预测控制制定基于模型的方法,解决了闭环DBS问题,即以响应患者症状的方式提供刺激。本论文可以改善患者的护理,患者的生活质量以及针对PD和ET患者的DBS治疗的成本效益。另外,关于神经刺激优化的新结果可能在神经调节和生物电子医学的不断发展的医学和研究领域中更广泛地有用。最后,我们讨论了如何在现代医疗保健系统中将该数据驱动的方法集成到DBS治疗中,并根据DBS系统中预期的技术发展来讨论这些结果的相关性。

著录项

  • 作者

    Haddock, Andrew J.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Electrical engineering.;Biomedical engineering.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:52

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号