首页> 美国卫生研究院文献>other >Proteomic and genetic analysis of S. cerevisiae response to soluble copper leads to improvement of antimicrobial function of cellulosic copper nanoparticles
【2h】

Proteomic and genetic analysis of S. cerevisiae response to soluble copper leads to improvement of antimicrobial function of cellulosic copper nanoparticles

机译:酿酒酵母对可溶性铜的响应的蛋白质组学和遗传分析可改善纤维素铜纳米颗粒的抗菌功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Copper (Cu) was used in antiquity to prevent waterborne and food diseases because, as a broad-spectrum antimicrobial agent, it generates reactive oxygen species, ROS. New technologies incorporating Cu into low-cost biodegradable nanomaterials built on cellulose, known as cellulosic cupric nanoparticles or c-CuNPs, present novel approaches to deliver Cu in a controlled manner to control microbial growth. We challenged strains of Saccharomyces cerevisiae to soluble Cu and c-CuNPs to evaluate the potential of c-CuNPs as antifungal agents. Cells exposed to c-CuNPs demonstrated greater sensitivity to Cu than cells exposed to soluble Cu, although Cu-resistant strains were more tolerant than Cu-sensitive strains of c-CuNP exposure. At the same level of growth inhibition, 157 μM c-CuNP led to the same internal Cu levels as did 400 CuSO4, offering evidence for alternative mechanisms of toxicity, perhaps through β-arrestin dependent endocytosis, which was supported by flow cytometry and fluorescence microscopy of c-CuNPs distributed both on the cell surface and within the cytoplasm. Genes responsible for genetic variation to copper were mapped to the ZRT2 and the CUP1 loci. Through proteomic analyses, we found that the expression of other zinc (Zn) transporters increased in Cu-tolerant yeast compared to Cu-sensitive strains. Further, the addition of Zn at low levels increased the potency of c-CuNP to inhibit even the most Cu-tolerant yeast. Through unbiased systems biological approaches, we identified Zn as a critical component of yeast response to Cu and the addition of Zn increased potency of the c-CuNPs.
机译:铜(Cu)在古代用于预防水传疾病和食物疾病,因为它作为广谱抗菌剂,会产生活性氧ROS。将铜结合到基于纤维素的低成本可生物降解纳米材料中的新技术,称为纤维素铜纳米颗粒或c-CuNPs,提出了以可控方式输送铜以控制微生物生长的新颖方法。我们向酿酒酵母菌株挑战可溶性铜和c-CuNPs,以评估c-CuNPs作为抗真菌剂的潜力。暴露于c-CuNPs的细胞表现出比暴露于可溶性Cu的细胞更高的对Cu的敏感性,尽管与c-CuNP暴露的Cu敏感菌株相比,对Cu敏感的菌株耐受性更高。在相同的生长抑制水平下,157μMc-CuNP导致的内部Cu水平与400 CuSO4相同,这为毒性的替代机制提供了证据,也许是通过β-arrestin依赖的内吞作用,这得到了流式细胞仪和荧光显微镜的支持c-CuNPs分布在细胞表面和细胞质内。负责铜遗传变异的基因被定位到ZRT2和CUP1基因座。通过蛋白质组学分析,我们发现与铜敏感菌株相比,耐铜酵母中其他锌(Zn)转运蛋白的表达增加。此外,以低水平添加Zn可提高c-CuNP抑制甚至最耐铜酵母的能力。通过无偏系统的生物学方法,我们确定了Zn是酵母菌对Cu应答的关键成分,而Zn的添加增加了c-CuNPs的效力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号