首页> 美国卫生研究院文献>other >EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches
【2h】

EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches

机译:运动成像期间脑电感觉运动节律的变化和功能连接性测量:线性关系和分类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands’ power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns—that is, variations in the PSD of mu and beta bands—induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations (p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.
机译:据报道,手部运动图像(MI)会改变神经元之间的同步模式,从而使mu和beta波段的脑电图(EEG)信号功率谱密度(PSD)发生变化。这些更改已在脑机接口(BCI)领域中使用,试图将独特的MI任务分配给此类系统的命令。最近的研究强调,如果不考虑有关脑功能连通性的知识,信息可能会丢失。在这项工作中,我们将大脑建模为一个图形,其中每个EEG电极代表一个节点。我们的目标是了解由MI引起的同步模式变化(即mu和beta波段PSD的变化)与相应功能网络的变化之间是否存在线性相关。此外,我们(1)探索了在MI-BCI的背景下使用功能连接参数作为分类器功能的可行性; (2)研究了三种不同类型的特征选择(FS)技术; (3)将我们的方法与使用信号PSD作为分类器输入的更传统方法进行了比较。十名健康受试者参加了这项研究。我们观察到一些电极的PSD变化和功能网络变化之间的显着相关性(p <0.05)在0.4到0.9之间,在β波段很明显。 PSD方法在数据分类方面表现更好,mu和beta波段的平均准确度分别为(90±8)%和(87±7)%,相比之下,mu和beta波段的平均准确度分别为(83±8)%和(83±7)%图形方法的频段相同。此外,用于图法的特征数量相当大。但是,两种方法的结果都比较接近,甚至在考虑准确率的不确定性时甚至重叠。关于仔细探索其他图形指标的进一步调查可能会提供更好的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号