首页> 美国卫生研究院文献>other >Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model
【2h】

Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model

机译:封装类型之间的独特电生理和阻抗特征:对生物犹他州阵列故障和仿生涂层在大鼠模型中的益处的分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intracortical microelectrode arrays, especially the Utah array, remain the most common choice for obtaining high dimensional recordings of spiking neural activity for brain computer interface and basic neuroscience research. Despite the widespread use and established design, mechanical, material and biological challenges persist that contribute to a steady decline in recording performance (as evidenced by both diminished signal amplitude and recorded cell population over time) or outright array failure. Device implantation injury causes acute cell death and activation of inflammatory microglia and astrocytes that leads to a chronic neurodegeneration and inflammatory glial aggregation around the electrode shanks and often times fibrous tissue growth above the pia along the bed of the array within the meninges. This multifaceted deleterious cascade can result in substantial variability in performance even under the same experimental conditions. We track both impedance signatures and electrophysiological performance of 4×4 floating microelectrode Utah arrays implanted in the primary monocular visual cortex (V1m) of Long-Evans rats over a 12-week period. We employ a repeatable visual stimulation method to compare signal-to-noise ratio as well as single- and multi-unit yield from weekly recordings. To explain signal variability with biological response, we compare arrays categorized as either Type I, partial fibrous encapsulation, or Type II, complete fibrous encapsulation and demonstrate performance and impedance signatures unique to encapsulation type. We additionally assess benefits of a biomolecule coating intended to minimize distance to recordable units and observe a temporary improvement on multi-unit recording yield and single unit amplitude.
机译:皮层内微电极阵列,尤其是犹他州阵列,仍然是获取高水平记录峰值神经活动以进行脑计算机接口和基础神经科学研究的最常见选择。尽管已被广泛使用并建立了设计方案,但机械,材料和生物学方面的挑战仍然存在,这导致记录性能的稳定下降(信号强度和记录的细胞数量随时间推移而降低)或彻底的阵列故障。装置植入损伤会导致急性细胞死亡以及炎性小胶质细胞和星形胶质细胞活化,从而导致电极柄周围的慢性神经变性和炎性神经胶质聚集,并经常使纤维组织在脑膜上方沿阵列床的pia上方生长。即使在相同的实验条件下,这种多方面的有害级联也可能导致性能发生重大变化。我们追踪了在12周内植入Long-Evans大鼠初级单眼视觉皮层(V1m)的4×4浮动微电极犹他州阵列的阻抗特征和电生理性能。我们采用可重复的视觉刺激方法,比较每周记录的信噪比以及单单位和多单位收益。为了解释具有生物响应的信号可变性,我们比较了归类为I型,部分纤维包囊或II型,完全纤维包囊的阵列,并演示了包囊类型特有的性能和阻抗特征。我们还评估了生物分子涂层的好处,该涂层旨在最大程度地减少与可记录单位的距离,并观察到多单位记录产量和单个单位幅度的暂时改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号