首页> 美国卫生研究院文献>other >The Aspergillus flavus Spermidine Synthase (spds) Gene Is Required for Normal Development Aflatoxin Production and Pathogenesis During Infection of Maize Kernels
【2h】

The Aspergillus flavus Spermidine Synthase (spds) Gene Is Required for Normal Development Aflatoxin Production and Pathogenesis During Infection of Maize Kernels

机译:玉米仁感染过程中正常发育黄曲霉毒素的产生和发病机理需要曲霉黄曲霉亚精胺合酶(spds)基因。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs) known as aflatoxins. Polyamines (PAs) are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd) is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A), and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put) by the enzyme spermidine synthase (Spds). Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT) A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro) significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc) and S-adenosylmethionine decarboxylase (Samdc) genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the host plant, are insufficient to restore WT levels of pathogenesis and aflatoxin production during seed infection. The data presented here suggest that future studies targeting spermidine biosynthesis in A. flavus, using RNA interference-based host-induced gene silencing approaches, may be an effective strategy to reduce aflatoxin contamination in maize and possibly in other susceptible crops.
机译:黄曲霉是一种土壤传播的腐生植物,是人类和植物的机会病原体。这种真菌不仅会在重要的食品和饲料作物(例如玉米,花生,棉籽和树坚果)中引起疾病​​,而且还会产生有毒且致癌的次生代谢产物(SMs),称为黄曲霉毒素。多胺(PAs)是普遍存在的聚阳离子,会影响活生物体的正常生长,发育和应激反应,并已显示在真菌发病机理中起重要作用。亚精胺(Spd)的生物合成对于细胞生长至关重要,因为它是hypusination介导的真核翻译起始因子5A(eIF5A)激活和其他生化功能所必需的。三胺Spd是由亚胺腐胺合成酶(Spds)由二胺腐胺(Put)合成的。 spds的失活导致体外生长和孢子形成的全部丧失,可以通过添加外源Spd来部分恢复。 Δspds突变体与野生型(WT)黄曲霉spds基因的互补恢复了WT表型。在野生黄曲霉中,Spd的外源供应(体外)显着增加了菌核和SM的产生。与对照相比,用Δspds突变体感染玉米粒导致真菌生长,孢子形成和黄曲霉毒素产量显着降低。与野生型黄曲霉感染的种子相比,Δspds突变体感染的种子的定量PCR显示该突变体中黄曲霉毒素生物合成基因的下调。在黄曲霉菌-玉米相互作用过程中PA代谢/转运基因的表达分析表明,玉米宿主中精氨酸脱羧酶(Adc)和S-腺苷甲硫氨酸脱羧酶(Samdc)基因的表达显着增加,真菌中PA吸收转运蛋白。此处显示的结果表明,Spd的生物合成对于黄曲霉的正常发育和发病机理至关重要,对带有宿主菌的Spd或Spd吸收的Δspds突变体进行预处理不足以恢复种子期间WT的发病机理和黄曲霉毒素的生产水平。感染。此处提供的数据表明,针对 A中亚精胺生物合成的未来研究。使用基于RNA干扰的宿主诱导的基因沉默方法,黄酮可能是减少玉米以及其他易感作物中黄曲霉毒素污染的有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号