首页> 美国卫生研究院文献>Frontiers in Neuroscience >Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity
【2h】

Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity

机译:脑复杂性多尺度熵的神经生理学基础及其与功能连通性的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing—increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
机译:近来,诸如多尺度熵(MSE)之类的非线性统计量已经被引入作为跨多个时间尺度的电生理学和fMRI时间序列的复杂性的指标。在这项工作中,我们研究了电生理学和功能磁共振成像信号的复杂性(MSE)的神经生理学基础以及它们与功能连接性(FC)的关系。 MSE和FC分析使用基于神经质量模型的大脑网络模型和Brain Dynamics Toolbox在模拟数据上进行,在同时记录fMRI和电生理学并结合药理学操作的动物模型上进行,以及对来自Human Connectome的静止状态fMRI数据进行MSE和FC分析项目。我们的结果表明,区域电生理学和功能磁共振成像信号的复杂性与网络FC正相关。 MSE和FC之间的关联取决于时间范围或频率,MSE和FC之间的关联在较低的时间频率下具有较高的关联性。我们从理论模型,动物实验和人体功能磁共振成像得到的结果表明:(1)区域神经复杂性和网络功能障碍可能是大脑信息处理的两个相关方面:区域神经活动越复杂,该区域与其他大脑区域的联系程度越高; (2)高频率和低频率的MSE可能代表了整个大脑区域的局部和分布式信息处理。根据文献和我们的数据,我们建议区域神经信号的复杂性可以作为大脑信息处理能力的指标-复杂性的提高可能表明大脑网络不同状态之间的过渡或探索程度更高,从而对信息的倾向更大处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号