首页> 美国卫生研究院文献>other >Probe-sample interaction-independent Atomic Force Microscopy-Infrared (AFM-IR) spectroscopy: towards robust nanoscale compositional mapping
【2h】

Probe-sample interaction-independent Atomic Force Microscopy-Infrared (AFM-IR) spectroscopy: towards robust nanoscale compositional mapping

机译:探针-样品相互作用无关的原子力显微镜-红外(AFM-IR)光谱:迈向鲁棒的纳米级成分映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoscale topological imaging using Atomic Force Microscopy (AFM) combined with infrared (IR) spectroscopy is a rapidly emerging modality (AFM-IR) to record correlated structural and chemical images. While the expectation is that the spectral data faithfully represents the underlying chemical composition, sample mechanical properties affect the recorded data (known as the probe-sample interaction effect). Although experts in the field are aware of this effect, the contribution is not fully understood. Further, when the sample properties are not well known or when AFM-IR experiments are conducted by non-experts, there is a chance that these non-molecular properties may affect analytical measurements in an uncertain manner. Techniques such as resonance enhanced imaging and normalization of IR signal using ratios might improve fidelity of recorded data but are not universally effective. Here we provide a fully analytical model that relates cantilever response to the local sample expansion which opens several avenues. We demonstrate a new method for removing probe-sample interaction effects in AFM-IR images by measuring the cantilever responsivity using a mechanically induced out-of-plane sample vibration. This method is then applied to model polymers and mammary epithelial cells to show improvements in sensitivity, accuracy and repeatability for measuring soft matter compared to current state of the art (resonance enhanced operation). Rigorous analytical model driven sample-dependent cantilever responsivity understanding is an essential addition to AFM-IR imaging if identification of chemical features at nanoscale resolutions is to be realized for arbitrary samples.
机译:使用原子力显微镜(AFM)与红外(IR)光谱相结合的纳米级拓扑成像是一种快速出现的模式(AFM-IR),用于记录相关的结构和化学图像。人们期望光谱数据能忠实地代表潜在的化学成分,而样品的机械性能会影响记录的数据(称为探针-样品相互作用效应)。尽管本领域的专家已经意识到了这种影响,但是其贡献还没有被完全理解。此外,当样品特性不为人所知时或由非专家进行AFM-IR实验时,这些非分子特性可能会以不确定的方式影响分析测量。诸如共振增强成像和使用比率对IR信号进行归一化之类的技术可能会提高记录数据的保真度,但并不能普遍有效。在这里,我们提供了一个完整的分析模型,该模型将悬臂响应与局部样本扩展相关联,从而打开了几种途径。我们演示了一种新方法,该方法通过使用机械感应的平面外样品振动测量悬臂响应度来消除AFM-IR图像中的探针-样品相互作用效应。然后将该方法应用于聚合物和乳腺上皮细胞模型,以显示与现有技术(共振增强操作)相比,用于测量软物质的灵敏度,准确性和可重复性得到改善。如果要对任意样品实现纳米级分辨率的化学特征识别,则严格的分析模型驱动的依赖样品的悬臂响应度理解是AFM-IR成像的重要补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号