首页> 美国卫生研究院文献>other >Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network
【2h】

Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network

机译:使用深度时间序列网络基于裂隙灯图像预测眼科疾病的进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ocular images play an essential role in ophthalmology. Current research mainly focuses on computer-aided diagnosis using slit-lamp images, however few studies have been done to predict the progression of ophthalmic disease. Therefore exploring an effective approach of prediction can help to plan treatment strategies and to provide early warning for the patients. In this study, we present an end-to-end temporal sequence network (TempSeq-Net) to automatically predict the progression of ophthalmic disease, which includes employing convolutional neural network (CNN) to extract high-level features from consecutive slit-lamp images and applying long short term memory (LSTM) method to mine the temporal relationship of features. First, we comprehensively compare six potential combinations of CNNs and LSTM (or recurrent neural network) in terms of effectiveness and efficiency, to obtain the optimal TempSeq-Net model. Second, we analyze the impacts of sequence lengths on model’s performance which help to evaluate their stability and validity and to determine the appropriate range of sequence lengths. The quantitative results demonstrated that our proposed model offers exceptional performance with mean accuracy (92.22), sensitivity (88.55), specificity (94.31) and AUC (97.18). Moreover, the model achieves real-time prediction with only 27.6ms for single sequence, and simultaneously predicts sequence data with lengths of 3–5. Our study provides a promising strategy for the progression of ophthalmic disease, and has the potential to be applied in other medical fields.
机译:眼图在眼科中起着至关重要的作用。当前的研究主要集中在使用裂隙灯图像的计算机辅助诊断上,但是很少有研究可以预测眼科疾病的进展。因此,探索一种有效的预测方法可有助于计划治疗策略并为患者提供早期预警。在这项研究中,我们提出了一种端到端时间序列网络(TempSeq-Net),以自动预测眼科疾病的进展,其中包括使用卷积神经网络(CNN)从连续裂隙灯图像中提取高级特征并应用长期短期记忆(LSTM)方法来挖掘特征的时间关系。首先,我们在有效性和效率方面综合比较了CNN和LSTM(或递归神经网络)的六个潜在组合,以获得最佳的TempSeq-Net模型。其次,我们分析序列长度对模型性能的影响,这有助于评估其稳定性和有效性,并确定适当的序列长度范围。定量结果表明,我们提出的模型具有卓越的性能,其平均准确度(92.22),灵敏度(88.55),特异性(94.31)和AUC(97.18)。此外,该模型可对单个序列仅进行27.6ms的实时预测,并同时预测3–5长度的序列数据。我们的研究为眼科疾病的发展提供了一种有前途的策略,并有可能在其他医学领域得到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号