首页> 美国卫生研究院文献>other >Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning
【2h】

Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning

机译:MRI与深度监督对抗学习的颅颌面部骨结构分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic segmentation of medical images finds abundant applications in clinical studies. Computed Tomography (CT) imaging plays a critical role in diagnostic and surgical planning of craniomaxillofacial (CMF) surgeries as it shows clear bony structures. However, CT imaging poses radiation risks for the subjects being scanned. Alternatively, Magnetic Resonance Imaging (MRI) is considered to be safe and provides good visualization of the soft tissues, but the bony structures appear invisible from MRI. Therefore, the segmentation of bony structures from MRI is quite challenging. In this paper, we propose a cascaded generative adversarial network with deep-supervision discriminator (Deep-supGAN) for automatic bony structures segmentation. The first block in this architecture is used to generate a high-quality CT image from an MRI, and the second block is used to segment bony structures from MRI and the generated CT image. Different from traditional discriminators, the deep-supervision discriminator distinguishes the generated CT from the ground-truth at different levels of feature maps. For segmentation, the loss is not only concentrated on the voxel level but also on the higher abstract perceptual levels. Experimental results show that the proposed method generates CT images with clearer structural details and also segments the bony structures more accurately compared with the state-of-the-art methods.
机译:医学图像的自动分割在临床研究中发现了广泛的应用。计算机断层扫描(CT)成像显示出清晰的骨结构,因此在颅颌面部(CMF)手术的诊断和手术计划中起着至关重要的作用。但是,CT成像会对被扫描的对象造成辐射风险。另外,磁共振成像(MRI)被认为是安全的,并且可以很好地显示软组织,但是骨头结构在MRI看来是不可见的。因此,从MRI进行骨结构分割非常具有挑战性。在本文中,我们提出了一种具有深度监督鉴别器(Deep-supGAN)的级联生成对抗网络,用于自动骨结构分割。此架构中的第一个块用于从MRI生成高质量的CT图像,第二个块用于从MRI和生成的CT图像分割骨骼结构。与传统的鉴别器不同,深度监督鉴别器在不同的特征图层次上将生成的CT与地面真相区分开。对于分割,损失不仅集中在体素级别,而且还集中在更高的抽象感知级别。实验结果表明,与最新方法相比,该方法生成的CT图像具有更清晰的结构细节,并且可以更准确地分割骨骼结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号