首页> 美国卫生研究院文献>other >Reanalysis intercomparisons of stratospheric polar processing diagnostics
【2h】

Reanalysis intercomparisons of stratospheric polar processing diagnostics

机译:平流层极地处理诊断的重新分析比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We compare herein polar processing diagnostics derived from the four most recent full-input reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis / Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), the Japanese Meteorological Agency’s Japanese 55-year Reanalysis (JRA-55), and the National Aeronautics and Space Administration’s Modern Era Retrospective-analysis for Research and Applications version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower to middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex.Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the southern hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3 K at some levels in the SH (1.5 K in the NH), and absolute differences of reanalysis APSC from the REM up to 1.5% of a hemisphere (0.75% of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: Average Tmin differences from the REM are generally less than 1 K in both hemispheres, and average APSC differences less than 0.3% of a hemisphere.The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVG) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVG showed convergence toward better agreement with the REM after 1999, while NH MPVG differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically-resolved PV for the different reanalyses.We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas.Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to Advanced TOVS and other data around 1998 – 2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.
机译:我们在这里比较源自四个最新的全输入再分析数据集的极地处理诊断:国家环境预测气候预报系统再分析/气候预报系统中心,版本2(CFSR / CFSv2),欧洲中程天气预报中心临时再分析(ERA-Interim),日本气象厅的日本55年再分析(JRA-55)和国家航空航天局的研究与应用第2版现代回顾分析(MERRA-2)。我们专注于基于平流层中低层温度和潜在涡度(PV)的诊断,这些温度与平流层极地云(PSC)的形成,氯的活化以及平流层极涡的强度,大小和寿命有关。最低温度(Tmin)和温度低于PSC形成阈值(APSC)的区域的面积显示,在重新分析之间,尤其是在南半球(SH)之间,在1999年之前的年份之间存在较大的持续差异。 Tmin的重分析合奏平均值(REM)在SH的某些水平上高达3 K(NH为1.5 K),重分析APSC与REM的绝对差值高达半球的1.5%(半球的0.75%)在NH中)。 1999年之后,重新分析在两个半球趋于更好的一致性,因此在SH中如此显着:两个半球与REM的平均Tmin差异通常小于1 K,平均APSC差异小于半球的0.3%。基于等熵PV的极地涡旋特征诊断,包括最大的PV梯度(MPVG)和太阳光下的涡旋面积(或阳光下的涡旋面积,SVA),表现出更为复杂的行为:SH MPVG显示出趋向于与REM更好地吻合1999年之后,NH MPVG的差异在一段时间内基本保持不变; SVA的差异在两个半球都保持相对恒定。尽管对于这些涡流诊断程序而言,与REM的平均差异通常很小,但由于需要使用不同的方法来获得垂直分辨率的PV来进行不同的重新分析,因此对于重新分析之间的这种差异的理解变得十分复杂。我们还评估了其他冬季汇总诊断程序,包括低于PSC阈值的冬季平均空气量以及涡旋衰减日期。对于低于PSC阈值的空气量,再分析通常在SH中最为一致,因为相对较小的年际变化导致许多冬季具有相似的极地处理潜力和持续时间,因此对再分析之间的气象条件差异敏感性较低。相反,新罕布什尔州冬季的年际变化很大,导致许多季节的边际条件对再分析差异更为敏感。对于涡旋衰减日期,SH的差异大于NH的差异。通常,再分析之间衰减日期的差异是由于其涡旋区域的持续差异所致。我们的结果表明,从1998年至2000年前后从再分析吸收Tiros操作垂直测深仪(TOVS)数据到Advanced TOVS以及其他数据的转变导致显着改善了所提供的温度诊断程序的一致性(尤其是在SH中),并且在较小程度上改善了涡旋诊断程序的一致性。我们提出了一些在极地加工研究中使用再分析的建议,特别是与对数据输入和同化变化的敏感性有关的建议。由于这些敏感性,我们强烈建议进行旨在评估由再分析温度得出的趋势的研究时要格外小心。我们还认为,评估极性处理科学结果的敏感性的最佳方法之一是使用多个重新分析数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号