首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Reanalysis intercomparisons of stratospheric polar processing diagnostics
【24h】

Reanalysis intercomparisons of stratospheric polar processing diagnostics

机译:Steanysis Compartics of Stratospheric Poly加工诊断

获取原文
           

摘要

We compare herein polar processing diagnostics derived from the four most recent “full-input” reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3K at some levels in the SH (1.5K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5% of a hemisphere (0.75% of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1K in both hemispheres, and average APSC differences less than 0.3%?of?a?hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.
机译:我们比较此处的极地处理诊断,来自四个最近的“全输入”再分析数据集:环境预测气候预测系统的国家集会/气候预测系统,版本2(CFSR / CFSv2),欧洲中等级中心天气预报临时(时代)重新分析,日本气象学局的55年(JRA-55)重新分析,以及美国国家航空航天局(NASA)的研究和应用近期回顾性分析(Merra-2 )。我们专注于基于温度和潜在的涡旋(PV)在下层平流层中的诊断,这些平流层与地段平流层云(PSC),氯激活以及平流层极性涡流的强度,尺寸和寿命的形成相关。极性最小温度(Tmin)和具有低于PSC形成阈值(APSC)的温度的区域区域显示了Reanalyses之间的大持续差异,特别是在1999年之前的南半球(SH)。Reanalyses的平均绝对差异Tmin中的重新分析合奏(REM)在SH(北半球 - NH中的1.5K)中的某些水平大约3K),并从REM的REMSC分析APSC的绝对差异高达半球(0.75%) NH中的半球)。在1999年之后,Reanalyses在两个半球中达到更好的协议,在SH:与剩余的平均Tmin差异在半球上通常小于1K,并且平均APSC差异小于0.3%?a?Hemisphere。基于Isentropic PV的诊断比较评估极性涡旋特性,包括最大PV梯度(MPVGS)和阳光下的涡旋区域(或Sunlit Vortex Area,SVA),显示出更复杂的行为:SH MPVGS显示更好的协议会聚在1999年之后的REM,而NH MPVGS差异随着时间的推移仍然很恒定;两个半球中SVA的差异保持相对恒定。虽然来自REM的平均差异通常很小,但对于这些涡流诊断,了解Reanalyses之间的这种差异是复杂的,需要使用不同的方法来获得不同的Reanalyses的垂直解决的PV。我们还评估了其他冬季季节摘要诊断,包括冬季平均空气量低于PSC阈值,涡流衰减日期。对于低于PSC阈值的空气量,Reanalyses通常在SH中最佳地同意,其中相对较小的际际变化导致了许多具有相似极性处理电位和持续时间的冬季季节,因此对Reanalyses中的气象状况的差异低敏感性。相比之下,NH冬季的较大年平变异性使得许多季节具有对再分析差异更敏感的边际条件。对于涡旋衰减日期,SH中可以看到较大的差异而不是NH;一般来说,Reanalyses之间的衰减日期的差异遵循其涡旋区域的持续差异。我们的结果表明,从Reanalyses将TIROS运行垂直发声器(TOV)数据的转换为高级TOV和1998-2000左右的其他数据产生了深刻的改善(特别是在SH)和A的温度诊断协议中产生了深刻的改善较小程度范围涡旋诊断的协议。我们在极地处理研究中使用Reanalyses的几项建议,特别是与数据输入和同化的变化的敏感性相关。由于这些敏感性,我们迫切谨慎地研究旨在评估从重新分析温度衍生的趋势的研究。我们还认为,评估科学结果对极性处理的敏感性的最佳方法之一是使用多个重新分析数据集。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号