首页> 美国卫生研究院文献>Frontiers in Neuroscience >Clinical Value of Machine Learning in the Automated Detection of Focal Cortical Dysplasia Using Quantitative Multimodal Surface-Based Features
【2h】

Clinical Value of Machine Learning in the Automated Detection of Focal Cortical Dysplasia Using Quantitative Multimodal Surface-Based Features

机译:机器学习在使用定量多峰基于表面特征自动检测局灶性皮质发育不良中的临床价值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Objective: To automatically detect focal cortical dysplasia (FCD) lesion by combining quantitative multimodal surface-based features with machine learning and to assess its clinical value.>Methods: Neuroimaging data and clinical information for 74 participants (40 with histologically proven FCD type II) was retrospectively included. The morphology, intensity and function-based features characterizing FCD lesions were calculated vertex-wise on each cortical surface and fed to an artificial neural network. The classifier performance was quantitatively and qualitatively assessed by performing statistical analysis and conventional visual analysis.>Results: The accuracy, sensitivity, specificity of the neural network classifier based on multimodal surface-based features were 70.5%, 70.0%, and 69.9%, respectively, which outperformed the unimodal classifier. There was no significant difference in the detection rate of FCD subtypes (Pearson’s Chi-Square = 0.001, p = 0.970). Cohen’s kappa score between automated detection outcomes and post-surgical resection region was 0.385 (considered as fair).>Conclusion: Automated machine learning with multimodal surface features can provide objective and intelligent detection of FCD lesion in pre-surgical evaluation and can assist the surgical strategy. Furthermore, the optimal parameters, appropriate surface features and efficient algorithm are worth exploring.
机译:>目的:通过将基于表面的定量多峰特征与机器学习相结合来自动检测局灶性皮质异常增生(FCD)病变,并评估其临床价值。>方法:神经影像学数据和临床回顾性地收集了74名参与者(40名经组织学证实为II型FCD)的信息。在每个皮质表面上逐顶点计算表征FCD病变的形态,强度和基于功能的特征,并将其输入人工神经网络。通过进行统计分析和常规视觉分析,对分类器的性能进行了定量和定性评估。 ,和69.9%,分别胜过单峰分类器。 FCD亚型的检出率没有显着差异(Pearson卡方= 0.001,p = 0.970)。自动检测结果与手术后切除区域之间的Cohen kappa得分为0.385(被认为是公平的)。>结论:具有多模式表面特征的自动化机器学习可以为手术前FCD病变提供客观和智能的检测评价并可以辅助手术策略。此外,最佳参数,适当的表面特征和有效的算法值得探讨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号