首页> 美国卫生研究院文献>The Journal of General Physiology >The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding
【2h】

The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding

机译:机械敏感通道MscS的胞质笼结构域是大分子拥挤的传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells actively regulate the macromolecular excluded volume of the cytoplasm to maintain the reciprocal fraction of free aqueous solution that is optimal for intracellular processes. However, the mechanisms whereby cells sense this critical parameter remain unclear. The mechanosensitive channel of small conductance (MscS channel), which is the major regulator of turgor in bacteria, mediates efflux of small osmolytes in response to increased membrane tension. At moderate sustained tensions produced by a decrease in external osmolarity, MscS undergoes slow adaptive inactivation; however, it inactivates abruptly in the presence of cytoplasmic crowding agents. To understand the mechanism underlying this rapid inactivation, we combined extrapolated and equilibrium molecular dynamics simulations with electrophysiological analyses of MscS mutants to explore possible transitions of MscS and generated models of the resting and inactivated states. Our models suggest that the coupling of the gate formed by TM3 helices to the peripheral TM1–TM2 pairs depends on the axial position of the core TM3 barrel relative to the TM1–TM2 shaft and the state of the associated hollow cytoplasmic domain (“cage”). They also indicate that the tension-driven inactivation transition separates the gate from the peripheral helices and promotes kinks in TM3s at G113 and that this conformation is stabilized by association of the TM3b segment with the β domain of the cage. We found that mutations destabilizing the TM3b–β interactions preclude inactivation and make the channel insensitive to crowding agents and voltage; mutations that strengthen this association result in a stable closed state and silent inactivation. Steered simulations showed that pressure exerted on the cage bottom in the inactivated state reduces the volume of the cage in the cytoplasm and at the same time increases the footprint of the transmembrane domain in the membrane, implying coupled sensitivity to both membrane tension and crowding pressure. The cage, therefore, provides feedback on the increasing crowding that disengages the gate and prevents excessive draining and condensation of the cytoplasm. We discuss the structural mechanics of cells surrounded by an elastic cell wall where this MscS-specific feedback mechanism may be necessary.
机译:细胞主动调节细胞质的大分子排除体积,以维持游离水溶液的倒数,这对于细胞内过程而言是最佳的。然而,细胞感知该关键参数的机制仍不清楚。小电导的机械敏感通道(MscS通道)是细菌膨胀的主要调节剂,响应膜张力的增加而介导小渗透液的流出。在由于外部渗透压降低而产生的中等持续张力下,MscS经历缓慢的适应性失活。然而,它在细胞质拥挤剂的存在下突然失活。为了了解这种快速失活的机理,我们将外推和平衡的分子动力学模拟与MscS突变体的电生理分析相结合,以探索MscS的可能转变以及生成的静止和失活状态模型。我们的模型表明,由TM3螺旋形成的门与外围TM1-TM2对的耦合取决于核心TM3桶相对于TM1-TM2轴的轴向位置以及相关的中空胞质域的状态(“笼” )。他们还表明,张力驱动的失活转变将门与周围螺旋分离,并促进了G3处TM3的扭结,并且该构象通过TM3b区段与笼子的β结构域的结合而得以稳定。我们发现,破坏TM3b-β相互作用的突变会阻止失活,并使通道对拥挤剂和电压不敏感。增强这种联系的突变会导致稳定的闭合状态和沉默失活。转向模拟显示,在灭活状态下施加在笼底上的压力会减少细胞质中笼的体积,同时会增加膜中跨膜结构域的覆盖面积,这意味着对膜张力和拥挤压力的耦合敏感性。因此,笼子可提供有关不断增长的拥挤情况的反馈,从而使门脱离并防止细胞质过度流失和凝结。我们讨论了弹性细胞壁所包围的细胞的结构力学,其中这种MscS特异性反馈机制可能是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号