首页> 美国卫生研究院文献>The Journal of General Physiology >Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study
【2h】

Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study

机译:谷胱甘肽/硫氧还蛋白系统调节线粒体H2O2排放:一项实验计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The net emission of hydrogen peroxide (H2O2) from mitochondria results from the balance between reactive oxygen species (ROS) continuously generated in the respiratory chain and ROS scavenging. The relative contribution of the two major antioxidant systems in the mitochondrial matrix, glutathione (GSH) and thioredoxin (Trx), has not been assessed. In this paper, we examine this key question via combined experimental and theoretical approaches, using isolated heart mitochondria from mouse, rat, and guinea pig.As compared with untreated control mitochondria, selective inhibition of Trx reductase with auranofin along with depletion of GSH with 2,4-dinitrochlorobenzene led to a species-dependent increase in H2O2 emission flux of 17, 11, and 6 fold in state 4 and 15, 7, and 8 fold in state 3 for mouse, rat, and guinea pig mitochondria, respectively. The maximal H2O2 emission as a percentage of the total O2 consumption flux was 11%/2.3% for mouse in states 4 and 3 followed by 2%/0.25% and 0.74%/0.29% in the rat and guinea pig, respectively.A minimal computational model accounting for the kinetics of GSH/Trx systems was developed and was able to simulate increase in H2O2 emission fluxes when both scavenging systems were inhibited separately or together. Model simulations suggest that GSH/Trx systems act in concert. When the scavenging capacity of either one of them saturates during H2O2 overload, they relieve each other until complete saturation, when maximal ROS emission occurs.Quantitatively, these results converge on the idea that GSH/Trx scavenging systems in mitochondria are both essential for keeping minimal levels of H2O2 emission, especially during state 3 respiration, when the energetic output is maximal. This suggests that the very low levels of H2O2 emission observed during forward electron transport in the respiratory chain are a result of the well-orchestrated actions of the two antioxidant systems working continuously to offset ROS production.
机译:线粒体中过氧化氢(H2O2)的净排放是由呼吸链中连续产生的活性氧(ROS)与清除ROS之间的平衡引起的。尚未评估线粒体基质中的两种主要抗氧化剂系统,即谷胱甘肽(GSH)和硫氧还蛋白(Trx)的相对贡献。在本文中,我们通过实验和理论相结合的方法研究了这个关键问题,使用了来自小鼠,大鼠和豚鼠的离体心脏线粒体。与未处理的对照线粒体相比,金黄色素选择性抑制Trx还原酶以及GSH耗竭2对于小鼠,大鼠和豚鼠的线粒体,在状态4和状态3中,4-二硝基氯苯分别导致H2O2排放通量增加17倍,11倍和6倍,在状态3时分别导致15、7和8倍。在状态4和状态3中,小鼠的最大H2O2排放占总O2消耗通量的百分比为11%/ 2.3%,然后在大鼠和豚鼠中分别为2%/ 0.25%和0.74%/ 0.29%。建立了考虑GSH / Trx系统动力学的计算模型,当两个清除系统分别或同时被抑制时,该模型能够模拟H2O2排放通量的增加。模型仿真表明,GSH / Trx系统协同工作。当其中任何一个的清除能力在H2O2超载期间达到饱和时,它们会相互释放直至完全饱和,此时会出现最大的ROS排放。从数量上看,这些结果集中于线粒体中GSH / Trx清除系统对于保持最小限度至关重要当能量输出最大时,尤其是在状态3呼吸期间,H2O2排放水平升高。这表明在呼吸链中正向电子传输过程中观察到的H2O2排放量非常低,这是由于两个抗氧化剂系统精心设计的动作不断地抵消了ROS产生的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号