首页> 美国卫生研究院文献>AMB Express >The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images
【2h】

The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images

机译:纤维素酶变体与位错的结合:基于CLSM(共聚焦激光扫描显微镜)图像的半定量分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Binding of enzymes to the substrate is the first step in enzymatic hydrolysis of lignocellulose, a key process within biorefining. During this process elongated plant cells such as fibers and tracheids have been found to break into segments at irregular cell wall regions known as dislocations or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall. The binding of fluorescently labelled cellobiohydrolases and endoglucanases to filter paper fibers was investigated using confocal laser scanning microscopy and a ratiometric method was developed to assess and quantify the abundance of the binding of cellulases to dislocations as compared to the surrounding cell wall. Only Humicola insolens EGV was found to have stronger binding preference to dislocations than to the surrounding cell wall, while no difference in binding affinity was seen for any of the other cellulose variants included in the study (H. insolens EGV variants, Trichoderma reesei CBHI, CBHII and EGII). This result favours the hypothesis that fibers break at dislocations during the initial phase of hydrolysis mostly due to mechanical failure rather than as a result of faster degradation at these locations.
机译:酶与底物的结合是木质纤维素酶促水解的第一步,这是生物精制的关键过程。在此过程中,已发现细长的植物细胞(例如纤维和气管)在不规则的细胞壁区域(称为位错或滑移平面)处破裂成段。在这里,我们研究纤维素酶是否比位错与周围细胞壁的结合程度更高。使用共聚焦激光扫描显微镜研究了荧光标记的纤维二糖水解酶和内切葡聚糖酶与滤纸纤维的结合,并开发了一种比率分析方法来评估和量化纤维素酶与位错的结合程度,与周围的细胞壁相比。发现仅腐殖质EGV对位错的结合偏好性强于对周围细胞壁的结合偏好,而对于研究中包括的任何其他纤维素变异体,未见腐殖质EGV变异体(腐殖酵母EGV变异体,里氏木霉CBHI, CBHII和EGII)。该结果支持这样的假设:纤维在水解的初始阶段在位错处断裂主要是由于机械故障,而不是由于在这些位置处更快的降解所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号