首页> 美国卫生研究院文献>Journal of Mathematical Neuroscience >Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator
【2h】

Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator

机译:爪蟾Ta中央模式发生器的简化模型中极限环的分叉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the study of a minimal microcircuit controlling locomotion in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central pattern generator (CPG) generate anti-phase oscillations between left and right half-centres. Experimental recordings show that the same CPG neurons can also generate transient bouts of long-lasting in-phase oscillations between left-right centres. These synchronous episodes are rarely recorded and have no identified behavioural purpose. However, metamorphosing tadpoles require both anti-phase and in-phase oscillations for swimming locomotion. Previous models have shown the ability to generate biologically realistic patterns of synchrony and swimming oscillations in tadpoles, but a mathematical description of how these oscillations appear is still missing. We define a simplified model that incorporates the key operating principles of tadpole locomotion. The model generates the various outputs seen in experimental recordings, including swimming and synchrony. To study the model, we perform detailed one- and two-parameter bifurcation analysis. This reveals the critical boundaries that separate different dynamical regimes and demonstrates the existence of parameter regions of bi-stable swimming and synchrony. We show that swimming is stable in a significantly larger range of parameters, and can be initiated more robustly, than synchrony. Our results can explain the appearance of long-lasting synchrony bouts seen in experiments at the start of a swimming episode.Electronic Supplementary MaterialThe online version of this article (10.1186/s13408-018-0065-9) contains supplementary material.
机译:我们目前对两天大的非洲爪蟾控制运动的最小微电路的研究。游泳期间,脊柱中央模式发生器(CPG)中的神经元在左右半中心之间产生反相振荡。实验记录表明,相同的CPG神经元还可以在左右两个中心之间产生持久的同相振荡的短暂回合。这些同步发作很少记录,也没有确定的行为目的。但是,变态的require需要游泳运动的反相和同相振荡。先前的模型已经显示出能够在t中产生生物现实的同步和游动振荡模式的能力,但是仍然缺少关于这些振荡如何出现的数学描述。我们定义了一个简化的模型,其中包含了lo运动的关键操作原理。该模型生成在实验记录中看到的各种输出,包括游泳和同步。为了研究该模型,我们执行了详细的一参数和二参数分叉分析。这揭示了分隔不同动力机制的临界边界,并证明了双稳态游泳和同步运动的参数区域的存在。我们显示,在较大范围的参数中,游泳是稳定的,并且比同步性可以更可靠地启动。我们的结果可以解释在游泳发作开始时在实验中看到的持久性同步发作的外观。电子补充材料本文的在线版本(10.1186 / s13408-018-0065-9)包含补充材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号