首页> 美国卫生研究院文献>Journal of Neurophysiology >Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses
【2h】

Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses

机译:在协同分析的设计和解释中受生物力学约束的任务的后果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3–0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight the importance of using experimental protocols with physiological variability to improve synergy analyses.
机译:矩阵分解算法通常用于分析肌肉活动并提供对神经肌肉控制的了解。这些算法识别低维子空间,通常称为协同作用,可以描述任务期间肌肉活动的变化。协同作用通常被解释为反映了潜在的神经控制。然而,尚不清楚这些分析如何受到生物力学和任务约束的影响,这也可能导致肌肉激活的低维模式。这项研究的目的是评估常用的算法和实验方法是否可以准确地识别基于协同的控制策略。通过评估以下五种常见矩阵分解算法的协同作用来实现这一效果:使用以下方法计算出的肌肉激活:1)使用肌肉骨骼模型进行生物力学约束的任务,以及2)使用随机协同激活进行任务约束的计算。通过计算估计的协同作用与模拟过程中施加的协同作用之间的相似性来评估算法性能;相似度范围从0(随机机会)到1(完全相似度)。尽管某些算法可以在没有生物力学或任务约束的情况下准确估计指定的协同作用(相似度> 0.7),但是在这些限制条件下,估计的协同作用的相似度显着降低(0.3-0.4)。这些算法准确识别协同作用的能力受到协同激活相关性的负面影响,当存在大量生物力学或任务约束时,协同激活的相关性会增加。协同激活的可变性增加,可以使用健壮的实验范例来捕获,其中包括电机激活模式的自然可变性,提高的识别准确性,但不能完全克服生物力学和任务约束的影响。这些结果表明,生物力学上受约束的任务可能会降低估计的协同作用的准确性,并突出显示使用具有生理变异性的实验规程来改善协同分析的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号