首页> 美国卫生研究院文献>Scientific Reports >Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide
【2h】

Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide

机译:关联M1二氧化钒的金属-绝缘体跃迁的能量和原子运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Materials that undergo reversible metal-insulator transitions are obvious candidates for new generations of devices. For such potential to be realised, the underlying microscopic mechanisms of such transitions must be fully determined. In this work we probe the correlation between the energy landscape and electronic structure of the metal-insulator transition of vanadium dioxide and the atomic motions occurring using first principles calculations and high resolution X-ray diffraction. Calculations find an energy barrier between the high and low temperature phases corresponding to contraction followed by expansion of the distances between vanadium atoms on neighbouring sub-lattices. X-ray diffraction reveals anisotropic strain broadening in the low temperature structure’s crystal planes, however only for those with spacings affected by this compression/expansion. GW calculations reveal that traversing this barrier destabilises the bonding/anti-bonding splitting of the low temperature phase. This precise atomic description of the origin of the energy barrier separating the two structures will facilitate more precise control over the transition characteristics for new applications and devices.
机译:经历可逆金属-绝缘体转变的材料显然是新一代设备的候选者。为了实现这种潜力,必须充分确定这种转变的潜在微观机制。在这项工作中,我们使用第一原理计算和高分辨率X射线衍射研究了二氧化钒的金属-绝缘体跃迁的能态和电子结构与发生的原子运动之间的相关性。计算发现在高温和低温相之间的能量垒,对应于收缩,然后是相邻子晶格上钒原子之间距离的扩大。 X射线衍射显示,在低温结构的晶面上各向异性应变变宽,但是仅对于那些受压缩/膨胀影响的间距的应变。 GW的计算表明,越过该壁垒会破坏低温相的键合/反键合分裂。分隔两个结构的能垒起源的这种精确的原子描述将有助于更精确地控制新应用和设备的过渡特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号