首页> 美国卫生研究院文献>Scientific Reports >THz-circuits driven by photo-thermoelectric gate-tunable graphene-junctions
【2h】

THz-circuits driven by photo-thermoelectric gate-tunable graphene-junctions

机译:由光电热门可调石墨烯结驱动的THz电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.
机译:对于未来的片上通信方案,将具有超快光电功能的纳米级材料集成到高频电路中至关重要。原子薄的石墨烯因其宽带光吸收和高电子迁移率而被广泛证明适用于光伏和光电设备。此外,已经在石墨烯中证实了光生电荷载流子的超快弛豫。在这里,我们表明双门石墨烯结可以是太赫兹电路的功能部分。作为基础的光电过程,我们利用超快的光热电流。我们描述了飞秒激光激发后无偏器件的即时光热电流。对于光激发后的皮秒时间标度,显示了一个附加的光热电贡献,该贡献显示出空间反转温度曲线的指纹。后者可以通过石墨烯内的电子和声子浴与基底和金属触点的不同时间常数和热耦合机理来理解。这些过程的相互作用会在高频电路中产生超快的电磁瞬变,对于从根本上理解基于石墨烯的超快光电探测器和开关也同样重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号