首页> 美国卫生研究院文献>Scientific Reports >Low frequency piezoresonance defined dynamic control of terahertz wave propagation
【2h】

Low frequency piezoresonance defined dynamic control of terahertz wave propagation

机译:低频压电谐振定义的太赫兹波传播动态控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
机译:相位调制器是电磁波和光电波传播中许多应用的关键组件之一。移相器在通信,成像和相干材料激发中起着不可或缺的作用。为了将太赫兹(THz)电磁频谱实现为全功能带宽,需要开发一系列有效的THz相位调制器。尽管人们已经进行了很多尝试来实现基于量子阱结构,液晶或超材料的太赫兹相位调制器,但是由于压电谐振器件可以使相位调制的灵敏度和动态控制得到显着改善,尚待调查。在本文中,我们通过在压电谐振下运行铁电单晶LiNbO3薄膜器件来提供THz光束相位调制的实验演示。由外部交流电激发的压电谐振电场会在电磁波与晶格波之间产生耦合,并且这种耦合通过调制其相移函数来控制入射太赫兹束的波传播。我们报告了在这项工作中发展的理解可以促进共振定义的高灵敏度和极低能量的亚毫米波传感器和调制器系列的设计和制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号