首页> 外文学位 >Ferroics and Multiferroics for Dynamically Controlled Terahertz Wave Propagation
【24h】

Ferroics and Multiferroics for Dynamically Controlled Terahertz Wave Propagation

机译:动态控制太赫兹波传播的铁磁和多铁磁

获取原文
获取原文并翻译 | 示例

摘要

The terahertz (THz) region of electromagnetic spectra, referred roughly to the frequency range of 100 GHz (0.1 THz) to 10 THz, is the bridging gap between the microwave and infrared spectral bands. Previously confined only to astronomy and analytical sciences due to the unavailability of technology, with the recent advancements in non-linear optics, this novel field has now started emerging as a promising area of research and study. Considerable efforts are underway to fill this 'THz gap' by developing efficient THz sources, detectors, switches, modulators etc.;Be it any field, to realize this regime as one of the active frontiers, it is essential to have an efficient control over the wave propagation. In this research, functional materials (ferroics/multiferroics) have been explored to attain dynamic control over the THz beam propagation. The objective is to expand the horizon by enabling different family of materials to be incorporated in the design of THz modulators, exploiting the novel properties they exhibit.;To reach that goal, following a comprehensive but selective (to dielectrics) review on the current-status of this research field, some preliminary studies on ferroic materials have been performed to understand the crux of ferroism and the novel functionalities they have to offer. An analytical study on microstructural and nanoscale properties of solid-solution ferroelectric Pb(Zr0.52Ti 0.48)O3 (PZT) and composite bio-ferroic seashells have been performed to elucidate the significance of structure-property relationship in intrinsic ferroelectrics. Moving forward, engineered ferroelectricity has been demonstrated. A precise control over fabrication parameters has been exploited to introduce oxygen-vacancy defined nanoscale polar-domains in centrosymmetric BaZrO3. Realizing that structure-property relationship can significantly influence the material properties and therefore the device performance, models for figure of merit analysis have been developed for an effective application-based material selection. Lastly, perceiving that THz wave generation involves non-linear optics, upconversion in a co-doped ferroic system (Sr0.60Ba 0.40Nb2O6: Mo, Cr) has also been explored as part of the preliminary set of investigations.;After the initial studies, a family of oxide materials (0.7Sr(Al 1/2Nb1/2)O3-0.3NdGaO3, LiNbO3 , (SrBa)Nb2O6, BiFeO3) have been studied and characterized to evaluate their suitability for THz modulator designs. Based on these elaborate studies, materials have been selected for the modulator designs presented in this dissertation. A significant control over THz wave propagation has been achieved by engineered polarization-distribution in ferroic materials. THz attenuators, designed out of a conduit comprising of periodically placed x and z-cut LiNbO3 crystalline slabs has been configured as a tristate switch by modulating the amplitude of the traversing THz wave by altering the angle of incidences. Advancing further, a dynamic control over the phase of the incident THz beam has been demonstrated by designing a low frequency piezoresonance defined THz phase-modulator, employing single crystalline LiNbO3 thin film system.;Though a phase modulation as high as 180° has been obtained using piezoresonance, for applications demanding non-contact mode of excitations, alternative approaches involving light and magnetic field, have been developed. Magnetoelastoelectric coupling in core-shell nano-particles has been taken advantage of, to achieve dynamically tunable magnetic-field direction defined amplitude/phase mode-selective modulation of THz beam. For its realization, biphasic multiferroic nanocomposites, comprised of a ferromagnetic CoFe 2O4 core and a ferroelectric BaTiO3 shell, have been fabricated. Following that, a light-induced THz amplitude modulation is demonstrated, where Pb(FeNb)O3-NiZnFe2O4 excited with 800 nm femtosecond pulses amplifies the propagating beam.;Realizing the considerable influence, ferroics and multiferroics can have on THz wave propagation, they have been employed to develop novel metamaterial devices empowered by dynamic tunability. To attain the tunability, the design incorporates the novelty of ferroics in the patterning of the metasurfaces. In this research, the polarization induced surface charge density of ferroic materials rather than the conductivity of the metals has been exploited to achieve the resonances. After detailed analysis of the finite element models developed to evaluate the mechanism of the phenomena and the effectiveness of the device structures, optimal material and device configuration has been realized. The metamaterial resonance condition empowered by dynamic tunability has been achieved without using any conductor (metal), rather by using ferroelectric PVDF for the pattering in an optimized configuration of a double split ring resonator. Its fabrication process is also discussed.
机译:电磁频谱的太赫兹(THz)区域大致指100 GHz(0.1 THz)到10 THz的频率范围,是微波和红外光谱带之间的桥接间隙。由于技术的缺乏,以前只限于天文学和分析科学,随着非线性光学的最新发展,这个新颖的领域现在已开始成为有前途的研究领域。通过开发高效的太赫兹源,检测器,开关,调制器等,正在为填补这一``太赫兹差距''而付出的巨大努力;无论在任何领域,要实现这一制度为活跃的前沿领域之一,有效地控制波传播。在这项研究中,功能材料(铁/多铁)已被研究以实现对THz光束传播的动态控制。目的是通过将不同种类的材料结合到THz调制器的设计中,并利用它们展现出的新颖特性,来扩展视野。为了实现该目标,需要对电流进行全面但有选择性的(针对电介质的)审查。在该研究领域的现状下,已经对铁材料进行了一些初步研究,以了解铁素症的症结及其所提供的新颖功能。进行了固溶铁电体Pb(Zr0.52Ti 0.48)O3(PZT)和复合生物铁壳的微观结构和纳米级特性的分析研究,以阐明内在铁电体中结构-特性关系的重要性。展望未来,已经证明了工程铁电。已经开发了对制造参数的精确控制,以将氧空位定义的纳米级极性域引入到中心对称的BaZrO3中。意识到结构-特性关系会显着影响材料特性并因此影响器件性能,因此开发了用于品质因数分析的模型,用于基于应用程序的有效材料选择。最后,由于察觉到太赫兹波的产生涉及非线性光学,因此,作为初步研究的一部分,还探索了共掺杂铁体系(Sr0.60Ba 0.40Nb2O6:Mo,Cr)中的上转换。 ,已研究了一系列氧化物材料(0.7Sr(Al 1 / 2Nb1 / 2)O3-0.3NdGaO3,LiNbO3,(SrBa)Nb2O6,BiFeO3)并对其特性进行了评估,以评估其对THz调制器设计的适用性。基于这些详尽的研究,本文选择了用于调制器设计的材料。通过设计铁磁材料中的极化分布,可以有效控制THz波的传播。由导管组成的太赫兹衰减器,是由周期性放置的x和z切割的LiNbO3晶体平板构成的,通过改变入射角来调制横越过的太赫兹波的幅度,已被配置为三态开关。进一步发展,通过设计低频压电谐振定义的THz相位调制器,采用单晶LiNbO3薄膜系统,已证明了对入射THz光束的相位的动态控制;尽管已获得高达180°的相位调制使用压电谐振,对于要求非接触激励模式的应用,已经开发出涉及光和磁场的替代方法。已经利用核-壳纳米粒子中的磁-电耦合来实现动态可调的磁场方向定义的太赫兹束的幅度/相位模式选择性调制。为了实现它,已经制造了由铁磁CoFe 2O4核和铁电BaTiO3壳组成的双相多铁纳米复合材料。随后,证明了光诱导的太赫兹振幅调制,其中以800 nm飞秒脉冲激发的Pb(FeNb)O3-NiZnFe2O4放大了传播光束;认识到铁磁和多铁可对太赫兹波传播产生相当大的影响,它们具有已被用于开发通过动态可调性实现功能的新型超材料设备。为了获得可调性,该设计在亚表面的构图中纳入了铁酸金属的新颖性。在这项研究中,已经利用极化诱导的铁磁性材料的表面电荷密度而不是金属的电导率来实现共振。在对用于评估现象机理和器件结构有效性的有限元模型进行详细分析之后,实现了最佳的材料和器件配置。在不使用任何导体(金属)的情况下,已经实现了由动态可调谐性赋予的超材料共振条件,而不是通过使用铁电PVDF在双裂环共振器的优化配置中进行图案化。还讨论了其制造过程。

著录项

  • 作者

    Dutta, Moumita.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Electrical engineering.;Materials science.;Optics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号