首页> 美国卫生研究院文献>Scientific Reports >Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering
【2h】

Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering

机译:具有可调整纳米间隙的晶圆级双层金属纳米粒子的原子层沉积辅助形成用于表面增强拉曼散射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)anogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer deposition (ALD) and chemical etching process. The nanogap size between Au NPs can be easily and precisely tuned to nanometer scale by adjusting the thickness of sacrificial ALD Al2O3 layer. Finite-difference time-domain (FDTD) simulation data indicate that most of enhanced field locates at Au NPs nanogap area. Moreover, Au NPsanogap/Au NPs structure with smaller gap exhibits the larger electromagnetic field. Experimental results agree well with FDTD simulation data, the plasmonic structure with smaller nanogap size has a stronger Raman intensity. There is highly strong plasmonic coupling in the Au nanogap, so that a great SERS effect is obtained when detecting methylene blue (MB) molecules with an enhancement factor (EF) over 107. Furthermore, this plasmonic nanostructure can be designed on large area with high density and high intensity hot spots. This strategy of producing nanoscale metal gap on large area has significant implications for ultrasensitive Raman detection and practical SERS application.
机译:在这项工作中提出了一种简单的高通量方法,以制造用于表面增强拉曼散射(SERS)的Au纳米颗粒(NPs)/ nanogap / Au NPs结构。可以通过快速热退火(RTA),原子层沉积(ALD)和化学蚀刻工艺的组合来适当地制备这种等离子体纳米结构。通过调整牺牲ALD Al2O3层的厚度,可以轻松且精确地将Au NP之间的纳米间隙尺寸调整为纳米级。时域有限差分(FDTD)模拟数据表明,大多数增强场位于金纳米颗粒纳米间隙区域。而且,具有较小间隙的Au NPs /纳诺普/ Au NPs结构具有较大的电磁场。实验结果与FDTD模拟数据吻合得很好,纳米间隙尺寸较小的等离子体结构具有较强的拉曼强度。 Au纳米间隙中存在高度强的等离子体耦合,因此,当检测具有超过10 7 的增强因子(EF)的亚甲基蓝(MB)分子时,可以获得很好的SERS效果。此外,可以在具有高密度和高强度热点的大面积上设计这种等离子体纳米结构。这种在大面积上产生纳米级金属间隙的策略对超灵敏拉曼检测和实际SERS应用具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号