首页> 美国卫生研究院文献>Scientific Reports >Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators
【2h】

Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscillators

机译:使用耦合非线性振荡器的量子加热从Ising模型进行Boltzmann采样

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A network of Kerr-nonlinear parametric oscillators without dissipation has recently been proposed for solving combinatorial optimization problems via quantum adiabatic evolution through its bifurcation point. Here we investigate the behavior of the quantum bifurcation machine (QbM) in the presence of dissipation. Our numerical study suggests that the output probability distribution of the dissipative QbM is Boltzmann-like, where the energy in the Boltzmann distribution corresponds to the cost function of the optimization problem. We explain the Boltzmann distribution by generalizing the concept of quantum heating in a single nonlinear oscillator to the case of multiple coupled nonlinear oscillators. The present result also suggests that such driven dissipative nonlinear oscillator networks can be applied to Boltzmann sampling, which is used, e.g., for Boltzmann machine learning in the field of artificial intelligence.
机译:最近,提出了一种无耗散的Kerr非线性参数振荡器网络,用于通过量子绝热演化通过其分叉点来解决组合优化问题。在这里,我们研究在存在耗散的情况下量子分叉机(QbM)的行为。我们的数值研究表明,耗散QbM的输出概率分布类似于Boltzmann,其中Boltzmann分布中的能量对应于优化问题的成本函数。我们通过将单个非线性振荡器中的量子加热概念推广到多重耦合非线性振荡器的情况来解释玻耳兹曼分布。本结果还表明,这种驱动的耗散非线性振荡器网络可以应用于玻尔兹曼采样,其被用于例如人工智能领域中的玻尔兹曼机器学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号